{"title":"自动驾驶车辆基于情境的行为优化","authors":"M. Krodel, K. Kuhnert","doi":"10.1109/IVS.2004.1336413","DOIUrl":null,"url":null,"abstract":"Reinforcement learning (RL) is a method which provides true learning capabilities regarding situation-based actions. RL-systems explore and self-optimise actions for situations in a defined environment. This paper describes the research of a driver (assistance) system based on pure reinforcement learning in the framework of an autonomous vehicle. The target of this research is to determine to what extent RL-based systems serve as an enhancement or even an alternative to classical concepts of autonomous intelligent vehicles such as modelling or neural nets.","PeriodicalId":296386,"journal":{"name":"IEEE Intelligent Vehicles Symposium, 2004","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimising situation-based behaviour of autonomous vehicles\",\"authors\":\"M. Krodel, K. Kuhnert\",\"doi\":\"10.1109/IVS.2004.1336413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforcement learning (RL) is a method which provides true learning capabilities regarding situation-based actions. RL-systems explore and self-optimise actions for situations in a defined environment. This paper describes the research of a driver (assistance) system based on pure reinforcement learning in the framework of an autonomous vehicle. The target of this research is to determine to what extent RL-based systems serve as an enhancement or even an alternative to classical concepts of autonomous intelligent vehicles such as modelling or neural nets.\",\"PeriodicalId\":296386,\"journal\":{\"name\":\"IEEE Intelligent Vehicles Symposium, 2004\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Intelligent Vehicles Symposium, 2004\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2004.1336413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2004.1336413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimising situation-based behaviour of autonomous vehicles
Reinforcement learning (RL) is a method which provides true learning capabilities regarding situation-based actions. RL-systems explore and self-optimise actions for situations in a defined environment. This paper describes the research of a driver (assistance) system based on pure reinforcement learning in the framework of an autonomous vehicle. The target of this research is to determine to what extent RL-based systems serve as an enhancement or even an alternative to classical concepts of autonomous intelligent vehicles such as modelling or neural nets.