关系型复合协同过滤推荐系统

Chiu-Ching Tuan, Chi-Fu Hung, Kuan-Wei Tseng
{"title":"关系型复合协同过滤推荐系统","authors":"Chiu-Ching Tuan, Chi-Fu Hung, Kuan-Wei Tseng","doi":"10.1109/BWCCA.2011.68","DOIUrl":null,"url":null,"abstract":"This paper presents a relational compound collaborative filtering (RCCF) recommendation system architecture, which integrated the behaviors associated mechanism and recommendation system to calculate the area associated values and the corresponding region of the recommended items rating, resulting in top-N list of the recommended item values. This system can avoid interested items in the MU¡¦s opposite direction and give higher weights value to the points of interest (POIs) in the predicted moving region in order to provide correct and real-time information and promote user satisfaction. We will use simulations to further verify the recommended accuracy and efficiency of the proposed RCCF recommendation system, but also look forward to apply on related mobile services.","PeriodicalId":391671,"journal":{"name":"2011 International Conference on Broadband and Wireless Computing, Communication and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Relational Compound Collaborative Filtering Recommendation System\",\"authors\":\"Chiu-Ching Tuan, Chi-Fu Hung, Kuan-Wei Tseng\",\"doi\":\"10.1109/BWCCA.2011.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a relational compound collaborative filtering (RCCF) recommendation system architecture, which integrated the behaviors associated mechanism and recommendation system to calculate the area associated values and the corresponding region of the recommended items rating, resulting in top-N list of the recommended item values. This system can avoid interested items in the MU¡¦s opposite direction and give higher weights value to the points of interest (POIs) in the predicted moving region in order to provide correct and real-time information and promote user satisfaction. We will use simulations to further verify the recommended accuracy and efficiency of the proposed RCCF recommendation system, but also look forward to apply on related mobile services.\",\"PeriodicalId\":391671,\"journal\":{\"name\":\"2011 International Conference on Broadband and Wireless Computing, Communication and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Broadband and Wireless Computing, Communication and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BWCCA.2011.68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Broadband and Wireless Computing, Communication and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BWCCA.2011.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种关系型复合协同过滤(RCCF)推荐系统架构,该架构将行为关联机制与推荐系统相结合,计算区域关联值和相应区域的推荐项目评分,得到推荐项目值top-N列表。该系统可以避免MU相反方向的感兴趣项目,并对预测移动区域内的感兴趣点(poi)赋予更高的权重值,从而提供正确、实时的信息,提高用户满意度。我们将通过仿真进一步验证所提出的RCCF推荐系统的推荐准确性和效率,同时也期待在相关移动服务上的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Relational Compound Collaborative Filtering Recommendation System
This paper presents a relational compound collaborative filtering (RCCF) recommendation system architecture, which integrated the behaviors associated mechanism and recommendation system to calculate the area associated values and the corresponding region of the recommended items rating, resulting in top-N list of the recommended item values. This system can avoid interested items in the MU¡¦s opposite direction and give higher weights value to the points of interest (POIs) in the predicted moving region in order to provide correct and real-time information and promote user satisfaction. We will use simulations to further verify the recommended accuracy and efficiency of the proposed RCCF recommendation system, but also look forward to apply on related mobile services.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信