在故障超立方体上广播

P. Sui, Sheng-de Wang, Isaac Yi-Yuan Lee
{"title":"在故障超立方体上广播","authors":"P. Sui, Sheng-de Wang, Isaac Yi-Yuan Lee","doi":"10.1109/ICPADS.1994.590062","DOIUrl":null,"url":null,"abstract":"In this paper we propose a method for constructing the maximum number of edge-disjoint spanning trees (in the directed sense) on a hypercube with arbitrary one faulty node. Each spanning tree is of optimal height. By taking the common neighbor of the roots of these edge-disjoint spanning trees as the new root and reversing the direction of the directed link from each root to the new root, a spanning graph, consisting of n-1 edge-disjoint spanning trees of optimal height is formed. Broadcasting based on the spanning graph has an optimal bandwidth utilization and an optimal latency.","PeriodicalId":154429,"journal":{"name":"Proceedings of 1994 International Conference on Parallel and Distributed Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Broadcasting on faulty hypercubes\",\"authors\":\"P. Sui, Sheng-de Wang, Isaac Yi-Yuan Lee\",\"doi\":\"10.1109/ICPADS.1994.590062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a method for constructing the maximum number of edge-disjoint spanning trees (in the directed sense) on a hypercube with arbitrary one faulty node. Each spanning tree is of optimal height. By taking the common neighbor of the roots of these edge-disjoint spanning trees as the new root and reversing the direction of the directed link from each root to the new root, a spanning graph, consisting of n-1 edge-disjoint spanning trees of optimal height is formed. Broadcasting based on the spanning graph has an optimal bandwidth utilization and an optimal latency.\",\"PeriodicalId\":154429,\"journal\":{\"name\":\"Proceedings of 1994 International Conference on Parallel and Distributed Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 International Conference on Parallel and Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPADS.1994.590062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 International Conference on Parallel and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS.1994.590062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种在具有任意一个故障节点的超立方体上构造最大数目边不相交生成树(有向意义上)的方法。每个生成树都有最优高度。将这些不相交生成树的根的共同邻居作为新根,并将每个根到新根的有向连接的方向反转,形成由n-1棵最优高度的不相交生成树组成的生成图。基于生成图的广播具有最佳的带宽利用率和最佳的延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Broadcasting on faulty hypercubes
In this paper we propose a method for constructing the maximum number of edge-disjoint spanning trees (in the directed sense) on a hypercube with arbitrary one faulty node. Each spanning tree is of optimal height. By taking the common neighbor of the roots of these edge-disjoint spanning trees as the new root and reversing the direction of the directed link from each root to the new root, a spanning graph, consisting of n-1 edge-disjoint spanning trees of optimal height is formed. Broadcasting based on the spanning graph has an optimal bandwidth utilization and an optimal latency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信