基于生成与判别混合模型的NLP领域自适应

Kang Liu, Jun Zhao
{"title":"基于生成与判别混合模型的NLP领域自适应","authors":"Kang Liu, Jun Zhao","doi":"10.1109/CCPR.2008.11","DOIUrl":null,"url":null,"abstract":"This study investigates the domain adaptation problem for nature language processing tasks in the distributional view. A novel method is proposed for domain adaptation based on the hybrid model which combines the discriminative model with the generative model. The advantage of the discriminative model is to have lower asymptotic error, while the advantage of the generative model can easily incorporate the unlabeled data for better generalization performance. The hybrid model can integrate their advantages. For domain transfer, the proposed method exploits the difference of the distributions in different domains to adjust the weights of the instances in the training set so that the source labeled data is more adaptive to the target domain. Experimental results on several NLP tasks in different domains indicate that our method outperforms both the traditional supervised learning and the semi-supervised method.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Domain Adaptation in NLP Based on Hybrid Generative and Discriminative Model\",\"authors\":\"Kang Liu, Jun Zhao\",\"doi\":\"10.1109/CCPR.2008.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the domain adaptation problem for nature language processing tasks in the distributional view. A novel method is proposed for domain adaptation based on the hybrid model which combines the discriminative model with the generative model. The advantage of the discriminative model is to have lower asymptotic error, while the advantage of the generative model can easily incorporate the unlabeled data for better generalization performance. The hybrid model can integrate their advantages. For domain transfer, the proposed method exploits the difference of the distributions in different domains to adjust the weights of the instances in the training set so that the source labeled data is more adaptive to the target domain. Experimental results on several NLP tasks in different domains indicate that our method outperforms both the traditional supervised learning and the semi-supervised method.\",\"PeriodicalId\":292956,\"journal\":{\"name\":\"2008 Chinese Conference on Pattern Recognition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Chinese Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPR.2008.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究从分布的角度探讨自然语言处理任务的领域自适应问题。提出了一种基于判别模型和生成模型相结合的混合模型的领域自适应方法。判别模型的优点是具有较小的渐近误差,而生成模型的优点是可以很容易地合并未标记的数据,从而获得更好的泛化性能。混合模式可以综合两者的优点。对于域转移,该方法利用不同域的分布差异来调整训练集中实例的权值,使源标记数据更适应目标域。在不同领域的NLP任务上的实验结果表明,该方法优于传统的监督学习和半监督学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Domain Adaptation in NLP Based on Hybrid Generative and Discriminative Model
This study investigates the domain adaptation problem for nature language processing tasks in the distributional view. A novel method is proposed for domain adaptation based on the hybrid model which combines the discriminative model with the generative model. The advantage of the discriminative model is to have lower asymptotic error, while the advantage of the generative model can easily incorporate the unlabeled data for better generalization performance. The hybrid model can integrate their advantages. For domain transfer, the proposed method exploits the difference of the distributions in different domains to adjust the weights of the instances in the training set so that the source labeled data is more adaptive to the target domain. Experimental results on several NLP tasks in different domains indicate that our method outperforms both the traditional supervised learning and the semi-supervised method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信