J. Millo, C. Lacroûte, A. Didier, E. Rubiola, Y. Kersalé, J. Paris
{"title":"低温单晶硅腔","authors":"J. Millo, C. Lacroûte, A. Didier, E. Rubiola, Y. Kersalé, J. Paris","doi":"10.1109/EFTF.2014.7331555","DOIUrl":null,"url":null,"abstract":"In this paper we present a study on an ultra-low noise cavity-stabilized-laser developed at the laboratory. The project aims to realize an ultra-stable cavity with a flicker frequency noise floor expected to be at ~ 4×10-17. This level of frequency noise can be achieved by making the cavity from a high mechanical quality factor material: single crystal silicon. The cavity needs to be cooled down to 17K with a cryocooled cryostat in order to cancel the coefficient of thermal expansion. Finite elements modeling helps to design a vibration insensitive cavity to be compatible with the objectives.","PeriodicalId":129873,"journal":{"name":"2014 European Frequency and Time Forum (EFTF)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cryogenic single crystal silicon cavity\",\"authors\":\"J. Millo, C. Lacroûte, A. Didier, E. Rubiola, Y. Kersalé, J. Paris\",\"doi\":\"10.1109/EFTF.2014.7331555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a study on an ultra-low noise cavity-stabilized-laser developed at the laboratory. The project aims to realize an ultra-stable cavity with a flicker frequency noise floor expected to be at ~ 4×10-17. This level of frequency noise can be achieved by making the cavity from a high mechanical quality factor material: single crystal silicon. The cavity needs to be cooled down to 17K with a cryocooled cryostat in order to cancel the coefficient of thermal expansion. Finite elements modeling helps to design a vibration insensitive cavity to be compatible with the objectives.\",\"PeriodicalId\":129873,\"journal\":{\"name\":\"2014 European Frequency and Time Forum (EFTF)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 European Frequency and Time Forum (EFTF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EFTF.2014.7331555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 European Frequency and Time Forum (EFTF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EFTF.2014.7331555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we present a study on an ultra-low noise cavity-stabilized-laser developed at the laboratory. The project aims to realize an ultra-stable cavity with a flicker frequency noise floor expected to be at ~ 4×10-17. This level of frequency noise can be achieved by making the cavity from a high mechanical quality factor material: single crystal silicon. The cavity needs to be cooled down to 17K with a cryocooled cryostat in order to cancel the coefficient of thermal expansion. Finite elements modeling helps to design a vibration insensitive cavity to be compatible with the objectives.