子宫颈图像彩色实例分割与分类

M. Said, Mohamed N. Moustafa, A. Wahba
{"title":"子宫颈图像彩色实例分割与分类","authors":"M. Said, Mohamed N. Moustafa, A. Wahba","doi":"10.1109/GCC45510.2019.1570520738","DOIUrl":null,"url":null,"abstract":"Instance segmentation is the task of assigning a label to each pixel in the image, treating objects of same class separately. On the other hand, classification assigns a label to the whole image. In this paper, we are comparing both methods on a data-set of different cervix types. It was required to detect which cervix type out of 3 categories the image holds. For classification using Convolutional neural network, the region of interest is segmented before starting to train the network. However, in instance segmentation, the input is the full image.Instance segmentation happened to outperform the classification pipeline on this data-set with accuracy of 62% vs 55% for the latter approach","PeriodicalId":352754,"journal":{"name":"2019 IEEE 10th GCC Conference & Exhibition (GCC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Color instance segmentation and classification of cervix images\",\"authors\":\"M. Said, Mohamed N. Moustafa, A. Wahba\",\"doi\":\"10.1109/GCC45510.2019.1570520738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Instance segmentation is the task of assigning a label to each pixel in the image, treating objects of same class separately. On the other hand, classification assigns a label to the whole image. In this paper, we are comparing both methods on a data-set of different cervix types. It was required to detect which cervix type out of 3 categories the image holds. For classification using Convolutional neural network, the region of interest is segmented before starting to train the network. However, in instance segmentation, the input is the full image.Instance segmentation happened to outperform the classification pipeline on this data-set with accuracy of 62% vs 55% for the latter approach\",\"PeriodicalId\":352754,\"journal\":{\"name\":\"2019 IEEE 10th GCC Conference & Exhibition (GCC)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 10th GCC Conference & Exhibition (GCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCC45510.2019.1570520738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 10th GCC Conference & Exhibition (GCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCC45510.2019.1570520738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

实例分割是为图像中的每个像素分配一个标签,对同一类对象分别进行处理。另一方面,分类为整个图像分配一个标签。在本文中,我们比较两种方法对不同宫颈类型的数据集。这是需要检测哪个子宫颈类型的3类图像持有。对于使用卷积神经网络进行分类,在开始训练网络之前对感兴趣的区域进行分割。然而,在实例分割中,输入是完整的图像。实例分割碰巧在该数据集上优于分类管道,准确率为62%,而后者的准确率为55%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Color instance segmentation and classification of cervix images
Instance segmentation is the task of assigning a label to each pixel in the image, treating objects of same class separately. On the other hand, classification assigns a label to the whole image. In this paper, we are comparing both methods on a data-set of different cervix types. It was required to detect which cervix type out of 3 categories the image holds. For classification using Convolutional neural network, the region of interest is segmented before starting to train the network. However, in instance segmentation, the input is the full image.Instance segmentation happened to outperform the classification pipeline on this data-set with accuracy of 62% vs 55% for the latter approach
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信