基于多分类器和空间约束的多模态mri脑肿瘤分割

Tianming Zhan, Yongzhao Zhan, Yao Ji, Shenghua Gu, Jin Wang, Lei Jiang
{"title":"基于多分类器和空间约束的多模态mri脑肿瘤分割","authors":"Tianming Zhan, Yongzhao Zhan, Yao Ji, Shenghua Gu, Jin Wang, Lei Jiang","doi":"10.1109/CIA.2015.12","DOIUrl":null,"url":null,"abstract":"Delineating brain tumor boundaries from multi-modality magnetic resonance images (MRIs) is a crucial step in brain cancer surgical and treatment planning. In this paper, we propose a fully automatic technique for brain tumor segmentation from multi-modality human brain MRIs. We first use the intensities of different modalities in MRIs to represent the features of both normal and abnormal tissues. Then, the multiple classifier system (MCS) is applied to calculate the probabilities of brain tumor and normal brain tissue in the whole image. At last, the spatial-contextual information is proposed by constraining the classified neighbors to improve the classification accuracy. Our method was evaluated on 20 multi-modality patient datasets with competitive segmentation results.","PeriodicalId":176961,"journal":{"name":"2015 3rd International Conference on Computer, Information and Application","volume":"46 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Brain Tumor Segmentation in Multi-modality MRIs Using Multiple Classifier System and Spatial Constraint\",\"authors\":\"Tianming Zhan, Yongzhao Zhan, Yao Ji, Shenghua Gu, Jin Wang, Lei Jiang\",\"doi\":\"10.1109/CIA.2015.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Delineating brain tumor boundaries from multi-modality magnetic resonance images (MRIs) is a crucial step in brain cancer surgical and treatment planning. In this paper, we propose a fully automatic technique for brain tumor segmentation from multi-modality human brain MRIs. We first use the intensities of different modalities in MRIs to represent the features of both normal and abnormal tissues. Then, the multiple classifier system (MCS) is applied to calculate the probabilities of brain tumor and normal brain tissue in the whole image. At last, the spatial-contextual information is proposed by constraining the classified neighbors to improve the classification accuracy. Our method was evaluated on 20 multi-modality patient datasets with competitive segmentation results.\",\"PeriodicalId\":176961,\"journal\":{\"name\":\"2015 3rd International Conference on Computer, Information and Application\",\"volume\":\"46 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 3rd International Conference on Computer, Information and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIA.2015.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd International Conference on Computer, Information and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIA.2015.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

从多模态磁共振图像(mri)中描绘脑肿瘤边界是脑癌手术和治疗计划的关键步骤。本文提出了一种基于多模态人脑核磁共振成像的全自动脑肿瘤分割技术。我们首先使用核磁共振成像中不同模式的强度来表示正常和异常组织的特征。然后,应用多分类器系统(MCS)计算整个图像中脑肿瘤和正常脑组织的概率。最后,通过约束分类邻域,提出空间上下文信息,提高分类精度。我们的方法在20个具有竞争性分割结果的多模态患者数据集上进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brain Tumor Segmentation in Multi-modality MRIs Using Multiple Classifier System and Spatial Constraint
Delineating brain tumor boundaries from multi-modality magnetic resonance images (MRIs) is a crucial step in brain cancer surgical and treatment planning. In this paper, we propose a fully automatic technique for brain tumor segmentation from multi-modality human brain MRIs. We first use the intensities of different modalities in MRIs to represent the features of both normal and abnormal tissues. Then, the multiple classifier system (MCS) is applied to calculate the probabilities of brain tumor and normal brain tissue in the whole image. At last, the spatial-contextual information is proposed by constraining the classified neighbors to improve the classification accuracy. Our method was evaluated on 20 multi-modality patient datasets with competitive segmentation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信