PIBE个性化图像浏览引擎

Ilaria Bartolini, P. Ciaccia, M. Patella
{"title":"PIBE个性化图像浏览引擎","authors":"Ilaria Bartolini, P. Ciaccia, M. Patella","doi":"10.1145/1039470.1039482","DOIUrl":null,"url":null,"abstract":"In this paper we describe PIBE, a new Personalizable Image Browsing Engine that allows an effective visual exploration of large image collections combining computer vision and database techniques. The principal features of PIBE include the possibility of modifying the browsing structure by means of graphical personalization actions provided by the visual interface, and of persistently storing such customizations for subsequent browsing sections. The PIBE hierarchical browsing structure, called Browsing Tree, can be locally customized, thus avoiding global reorganizations, which are clearly unfeasible with large collections. Indeed, each node of the Browsing Tree has associated a cluster of images and a specific dissimilarity function. We present the basic principles of the PIBE engine, and report some experimental results showing the effectiveness and the efficiency of the browsing and personalization functionalities provided.","PeriodicalId":346313,"journal":{"name":"Computer Vision meets Databases","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"The PIBE personalizable image browsing engine\",\"authors\":\"Ilaria Bartolini, P. Ciaccia, M. Patella\",\"doi\":\"10.1145/1039470.1039482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe PIBE, a new Personalizable Image Browsing Engine that allows an effective visual exploration of large image collections combining computer vision and database techniques. The principal features of PIBE include the possibility of modifying the browsing structure by means of graphical personalization actions provided by the visual interface, and of persistently storing such customizations for subsequent browsing sections. The PIBE hierarchical browsing structure, called Browsing Tree, can be locally customized, thus avoiding global reorganizations, which are clearly unfeasible with large collections. Indeed, each node of the Browsing Tree has associated a cluster of images and a specific dissimilarity function. We present the basic principles of the PIBE engine, and report some experimental results showing the effectiveness and the efficiency of the browsing and personalization functionalities provided.\",\"PeriodicalId\":346313,\"journal\":{\"name\":\"Computer Vision meets Databases\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Vision meets Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1039470.1039482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision meets Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1039470.1039482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在本文中,我们描述了PIBE,一个新的个性化图像浏览引擎,它允许结合计算机视觉和数据库技术对大型图像集合进行有效的视觉探索。PIBE的主要特性包括通过可视化界面提供的图形化个性化操作修改浏览结构的可能性,以及为后续浏览部分持久化存储这些定制。PIBE分层浏览结构(称为浏览树)可以在本地定制,从而避免全局重组,这对于大型集合显然是不可行的。实际上,浏览树的每个节点都关联了一组图像和一个特定的不相似函数。我们介绍了PIBE引擎的基本原理,并报告了一些实验结果,显示了所提供的浏览和个性化功能的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The PIBE personalizable image browsing engine
In this paper we describe PIBE, a new Personalizable Image Browsing Engine that allows an effective visual exploration of large image collections combining computer vision and database techniques. The principal features of PIBE include the possibility of modifying the browsing structure by means of graphical personalization actions provided by the visual interface, and of persistently storing such customizations for subsequent browsing sections. The PIBE hierarchical browsing structure, called Browsing Tree, can be locally customized, thus avoiding global reorganizations, which are clearly unfeasible with large collections. Indeed, each node of the Browsing Tree has associated a cluster of images and a specific dissimilarity function. We present the basic principles of the PIBE engine, and report some experimental results showing the effectiveness and the efficiency of the browsing and personalization functionalities provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信