{"title":"从能源和性能的角度评估重复数据删除的利弊","authors":"L. Costa, S. Al-Kiswany, R. Lopes, M. Ripeanu","doi":"10.1109/IGCC.2011.6008567","DOIUrl":null,"url":null,"abstract":"The energy costs of running computer systems are a growing concern: for large data centers, recent estimates put these costs higher than the cost of hardware itself. As a consequence, energy efficiency has become a pervasive theme for designing, deploying, and operating computer systems. This paper evaluates the energy trade-offs brought by data deduplication in distributed storage systems. Depending on the workload, deduplication can enable a lower storage footprint, reduce the I/O pressure on the storage system, and reduce network traffic, at the cost of increased computational overhead. From an energy perspective, data deduplication enables a trade-off between the energy consumed for additional computation and the energy saved by lower storage and network load. The main point our experiments and model bring home is the following: while for non energy-proportional machines performance- and energy-centric optimizations have break-even points that are relatively close, for the newer generation of energy proportional machines the break-even points are significantly different. An important consequence of this difference is that, with newer systems, there are higher energy inefficiencies when the system is optimized for performance.","PeriodicalId":306876,"journal":{"name":"2011 International Green Computing Conference and Workshops","volume":"4609 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Assessing data deduplication trade-offs from an energy and performance perspective\",\"authors\":\"L. Costa, S. Al-Kiswany, R. Lopes, M. Ripeanu\",\"doi\":\"10.1109/IGCC.2011.6008567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The energy costs of running computer systems are a growing concern: for large data centers, recent estimates put these costs higher than the cost of hardware itself. As a consequence, energy efficiency has become a pervasive theme for designing, deploying, and operating computer systems. This paper evaluates the energy trade-offs brought by data deduplication in distributed storage systems. Depending on the workload, deduplication can enable a lower storage footprint, reduce the I/O pressure on the storage system, and reduce network traffic, at the cost of increased computational overhead. From an energy perspective, data deduplication enables a trade-off between the energy consumed for additional computation and the energy saved by lower storage and network load. The main point our experiments and model bring home is the following: while for non energy-proportional machines performance- and energy-centric optimizations have break-even points that are relatively close, for the newer generation of energy proportional machines the break-even points are significantly different. An important consequence of this difference is that, with newer systems, there are higher energy inefficiencies when the system is optimized for performance.\",\"PeriodicalId\":306876,\"journal\":{\"name\":\"2011 International Green Computing Conference and Workshops\",\"volume\":\"4609 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Green Computing Conference and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGCC.2011.6008567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Green Computing Conference and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGCC.2011.6008567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assessing data deduplication trade-offs from an energy and performance perspective
The energy costs of running computer systems are a growing concern: for large data centers, recent estimates put these costs higher than the cost of hardware itself. As a consequence, energy efficiency has become a pervasive theme for designing, deploying, and operating computer systems. This paper evaluates the energy trade-offs brought by data deduplication in distributed storage systems. Depending on the workload, deduplication can enable a lower storage footprint, reduce the I/O pressure on the storage system, and reduce network traffic, at the cost of increased computational overhead. From an energy perspective, data deduplication enables a trade-off between the energy consumed for additional computation and the energy saved by lower storage and network load. The main point our experiments and model bring home is the following: while for non energy-proportional machines performance- and energy-centric optimizations have break-even points that are relatively close, for the newer generation of energy proportional machines the break-even points are significantly different. An important consequence of this difference is that, with newer systems, there are higher energy inefficiencies when the system is optimized for performance.