{"title":"未建模系统时序效应的统计诊断","authors":"P. Bastani, N. Callegari, Li-C. Wang, M. Abadir","doi":"10.1145/1391469.1391566","DOIUrl":null,"url":null,"abstract":"Explaining the mismatch between predicted timing behavior from modeling and simulation, and the observed timing behavior measured on silicon chips can be very challenging. Given a list of potential sources, the mismatch can be the aggregate result caused by some of them both individually and collectively, resulting in a very large search space. Furthermore, observed data are always corrupted by some unknown statistical random noises. To overcome both challenges, this paper proposes a statistical diagnosis framework that formulates the diagnosis problem as a regression learning problem. In this diagnosis framework, the objective is to rank a set of features corresponding to the list of potential sources of concern. The rank is based on measured silicon path delay data such that a feature inducing a larger unexpected timing deviation is ranked higher. Experimental results are presented to explain the learning method. Diagnosis effectiveness will be demonstrated through benchmark experiments and on an industrial design.","PeriodicalId":412696,"journal":{"name":"2008 45th ACM/IEEE Design Automation Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Statistical diagnosis of unmodeled systematic timing effects\",\"authors\":\"P. Bastani, N. Callegari, Li-C. Wang, M. Abadir\",\"doi\":\"10.1145/1391469.1391566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Explaining the mismatch between predicted timing behavior from modeling and simulation, and the observed timing behavior measured on silicon chips can be very challenging. Given a list of potential sources, the mismatch can be the aggregate result caused by some of them both individually and collectively, resulting in a very large search space. Furthermore, observed data are always corrupted by some unknown statistical random noises. To overcome both challenges, this paper proposes a statistical diagnosis framework that formulates the diagnosis problem as a regression learning problem. In this diagnosis framework, the objective is to rank a set of features corresponding to the list of potential sources of concern. The rank is based on measured silicon path delay data such that a feature inducing a larger unexpected timing deviation is ranked higher. Experimental results are presented to explain the learning method. Diagnosis effectiveness will be demonstrated through benchmark experiments and on an industrial design.\",\"PeriodicalId\":412696,\"journal\":{\"name\":\"2008 45th ACM/IEEE Design Automation Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 45th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1391469.1391566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 45th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1391469.1391566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Statistical diagnosis of unmodeled systematic timing effects
Explaining the mismatch between predicted timing behavior from modeling and simulation, and the observed timing behavior measured on silicon chips can be very challenging. Given a list of potential sources, the mismatch can be the aggregate result caused by some of them both individually and collectively, resulting in a very large search space. Furthermore, observed data are always corrupted by some unknown statistical random noises. To overcome both challenges, this paper proposes a statistical diagnosis framework that formulates the diagnosis problem as a regression learning problem. In this diagnosis framework, the objective is to rank a set of features corresponding to the list of potential sources of concern. The rank is based on measured silicon path delay data such that a feature inducing a larger unexpected timing deviation is ranked higher. Experimental results are presented to explain the learning method. Diagnosis effectiveness will be demonstrated through benchmark experiments and on an industrial design.