基于压缩感知的异构网络小区间干扰信道估计

Lingchen Zhu, J. McClellan
{"title":"基于压缩感知的异构网络小区间干扰信道估计","authors":"Lingchen Zhu, J. McClellan","doi":"10.1109/SPAWC.2014.6941843","DOIUrl":null,"url":null,"abstract":"Heterogeneous network (HetNet) uses two-tier network architecture in which an unplanned femtocell layer is randomly deployed with no coordination between the coexisting macrocell layer. Both layers share the same spectrum so that spontaneous intercell interference is unavoidable and needs to be identified and canceled afterwards. In order to address the subsequent interference management, this paper proposes an intercell interference channel estimation scheme for HetNets using compressive sensing (CS). Applying CS to analog orthogonal frequency division multiple access (OFDMA) signals not only achieves lower cost sub-Nyquist sampling but also reduces interference by spreading out the energy of reference symbols of interference link that overlaps data symbols of desired link. Our scheme enhances both desired data symbols and interference channel by canceling the estimations of each other from the received signal in turn iteratively. Simulation results show that our scheme obtains accurate estimation of interference channel and is robust to variations in multipath number and signal-to-interference ratio (SIR).","PeriodicalId":420837,"journal":{"name":"2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Compressive sensing based intercell interference channel estimation for heterogeneous network\",\"authors\":\"Lingchen Zhu, J. McClellan\",\"doi\":\"10.1109/SPAWC.2014.6941843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterogeneous network (HetNet) uses two-tier network architecture in which an unplanned femtocell layer is randomly deployed with no coordination between the coexisting macrocell layer. Both layers share the same spectrum so that spontaneous intercell interference is unavoidable and needs to be identified and canceled afterwards. In order to address the subsequent interference management, this paper proposes an intercell interference channel estimation scheme for HetNets using compressive sensing (CS). Applying CS to analog orthogonal frequency division multiple access (OFDMA) signals not only achieves lower cost sub-Nyquist sampling but also reduces interference by spreading out the energy of reference symbols of interference link that overlaps data symbols of desired link. Our scheme enhances both desired data symbols and interference channel by canceling the estimations of each other from the received signal in turn iteratively. Simulation results show that our scheme obtains accurate estimation of interference channel and is robust to variations in multipath number and signal-to-interference ratio (SIR).\",\"PeriodicalId\":420837,\"journal\":{\"name\":\"2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2014.6941843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2014.6941843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

异构网络(HetNet)采用两层网络架构,其中随机部署一个计划外的飞蜂窝层,共存的宏蜂窝层之间没有协调。两层共享相同的频谱,因此自发的细胞间干扰是不可避免的,需要识别和消除之后。为了解决后续的干扰管理问题,本文提出了一种基于压缩感知(CS)的蜂窝间干扰信道估计方案。将CS应用于模拟正交频分多址(OFDMA)信号,不仅实现了低成本的亚奈奎斯特采样,而且通过分散干扰链路中与期望链路数据符号重叠的参考符号的能量来减少干扰。该方案通过依次迭代消除接收信号中彼此的估计来增强所需的数据符号和干扰信道。仿真结果表明,该方案能够准确估计干扰信道,并且对多径数和信干扰比(SIR)的变化具有良好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compressive sensing based intercell interference channel estimation for heterogeneous network
Heterogeneous network (HetNet) uses two-tier network architecture in which an unplanned femtocell layer is randomly deployed with no coordination between the coexisting macrocell layer. Both layers share the same spectrum so that spontaneous intercell interference is unavoidable and needs to be identified and canceled afterwards. In order to address the subsequent interference management, this paper proposes an intercell interference channel estimation scheme for HetNets using compressive sensing (CS). Applying CS to analog orthogonal frequency division multiple access (OFDMA) signals not only achieves lower cost sub-Nyquist sampling but also reduces interference by spreading out the energy of reference symbols of interference link that overlaps data symbols of desired link. Our scheme enhances both desired data symbols and interference channel by canceling the estimations of each other from the received signal in turn iteratively. Simulation results show that our scheme obtains accurate estimation of interference channel and is robust to variations in multipath number and signal-to-interference ratio (SIR).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信