S. Chandraprabha, G. Pradeepkumar, Dineshkumar Ponnusamy, D. SaranyaM, S Satheeshkumar, R. Sowmya
{"title":"使用物联网和深度学习算法的实时LDR数据预测","authors":"S. Chandraprabha, G. Pradeepkumar, Dineshkumar Ponnusamy, D. SaranyaM, S Satheeshkumar, R. Sowmya","doi":"10.46532/978-81-950008-1-4_033","DOIUrl":null,"url":null,"abstract":"This paper outfits artificial intelligence based real time LDR data which is implemented in various applications like indoor lightning, and places where enormous amount of heat is produced, agriculture to increase the crop yield, Solar plant for solar irradiance Tracking. For forecasting the LDR information. The system uses a sensor that can measure the light intensity by means of LDR. The data acquired from sensors are posted in an Adafruit cloud for every two seconds time interval using Node MCU ESP8266 module. The data is also presented on adafruit dashboard for observing sensor variables. A Long short-term memory is used for setting up the deep learning. LSTM module uses the recorded historical data from adafruit cloud which is paired with Node MCU in order to obtain the real-time long-term time series sensor variables that is measured in terms of light intensity. Data is extracted from the cloud for processing the data analytics later the deep learning model is implemented in order to predict future light intensity values.","PeriodicalId":191913,"journal":{"name":"Innovations in Information and Communication Technology Series","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real Time LDR Data Prediction using IoT and Deep Learning Algorithm\",\"authors\":\"S. Chandraprabha, G. Pradeepkumar, Dineshkumar Ponnusamy, D. SaranyaM, S Satheeshkumar, R. Sowmya\",\"doi\":\"10.46532/978-81-950008-1-4_033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper outfits artificial intelligence based real time LDR data which is implemented in various applications like indoor lightning, and places where enormous amount of heat is produced, agriculture to increase the crop yield, Solar plant for solar irradiance Tracking. For forecasting the LDR information. The system uses a sensor that can measure the light intensity by means of LDR. The data acquired from sensors are posted in an Adafruit cloud for every two seconds time interval using Node MCU ESP8266 module. The data is also presented on adafruit dashboard for observing sensor variables. A Long short-term memory is used for setting up the deep learning. LSTM module uses the recorded historical data from adafruit cloud which is paired with Node MCU in order to obtain the real-time long-term time series sensor variables that is measured in terms of light intensity. Data is extracted from the cloud for processing the data analytics later the deep learning model is implemented in order to predict future light intensity values.\",\"PeriodicalId\":191913,\"journal\":{\"name\":\"Innovations in Information and Communication Technology Series\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innovations in Information and Communication Technology Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46532/978-81-950008-1-4_033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovations in Information and Communication Technology Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46532/978-81-950008-1-4_033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real Time LDR Data Prediction using IoT and Deep Learning Algorithm
This paper outfits artificial intelligence based real time LDR data which is implemented in various applications like indoor lightning, and places where enormous amount of heat is produced, agriculture to increase the crop yield, Solar plant for solar irradiance Tracking. For forecasting the LDR information. The system uses a sensor that can measure the light intensity by means of LDR. The data acquired from sensors are posted in an Adafruit cloud for every two seconds time interval using Node MCU ESP8266 module. The data is also presented on adafruit dashboard for observing sensor variables. A Long short-term memory is used for setting up the deep learning. LSTM module uses the recorded historical data from adafruit cloud which is paired with Node MCU in order to obtain the real-time long-term time series sensor variables that is measured in terms of light intensity. Data is extracted from the cloud for processing the data analytics later the deep learning model is implemented in order to predict future light intensity values.