{"title":"基于同伦的模拟电路意图杠杆优化","authors":"M. Jeeradit, Jaeha Kim, M. Horowitz","doi":"10.1109/DATE.2010.5457068","DOIUrl":null,"url":null,"abstract":"This paper proposes a circuit optimization approach that can ease the computational burden on the simulation-based circuit optimizers by leveraging simple design equations that reflect the designer's intent. The technique is inspired by continuation methods (a.k.a. homotopy) in numerical analysis where a hard problem is solved by constructing an easier problem first and gradually refining its solution to that of the hard problem. In a circuit optimization context, the designer's simplified equations for the circuit serve as the easier problem. These simplified design equations are easy to write as they need not be completely accurate and have intuitive, well-understood solutions. Nonetheless, in several circuit examples, it was found that the designer's equations serve as better guidance than the conventional, fixed-point equations. As a result, the proposed approach demonstrates the better convergence to the desired solution with less computational efforts.","PeriodicalId":432902,"journal":{"name":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Intent-leveraged optimization of analog circuits via homotopy\",\"authors\":\"M. Jeeradit, Jaeha Kim, M. Horowitz\",\"doi\":\"10.1109/DATE.2010.5457068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a circuit optimization approach that can ease the computational burden on the simulation-based circuit optimizers by leveraging simple design equations that reflect the designer's intent. The technique is inspired by continuation methods (a.k.a. homotopy) in numerical analysis where a hard problem is solved by constructing an easier problem first and gradually refining its solution to that of the hard problem. In a circuit optimization context, the designer's simplified equations for the circuit serve as the easier problem. These simplified design equations are easy to write as they need not be completely accurate and have intuitive, well-understood solutions. Nonetheless, in several circuit examples, it was found that the designer's equations serve as better guidance than the conventional, fixed-point equations. As a result, the proposed approach demonstrates the better convergence to the desired solution with less computational efforts.\",\"PeriodicalId\":432902,\"journal\":{\"name\":\"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATE.2010.5457068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2010.5457068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Intent-leveraged optimization of analog circuits via homotopy
This paper proposes a circuit optimization approach that can ease the computational burden on the simulation-based circuit optimizers by leveraging simple design equations that reflect the designer's intent. The technique is inspired by continuation methods (a.k.a. homotopy) in numerical analysis where a hard problem is solved by constructing an easier problem first and gradually refining its solution to that of the hard problem. In a circuit optimization context, the designer's simplified equations for the circuit serve as the easier problem. These simplified design equations are easy to write as they need not be completely accurate and have intuitive, well-understood solutions. Nonetheless, in several circuit examples, it was found that the designer's equations serve as better guidance than the conventional, fixed-point equations. As a result, the proposed approach demonstrates the better convergence to the desired solution with less computational efforts.