用于WiMax和X波段应用的双频微带天线设计

Prahlad, P. M, R. V, Mohammed Riyaz Ahmed
{"title":"用于WiMax和X波段应用的双频微带天线设计","authors":"Prahlad, P. M, R. V, Mohammed Riyaz Ahmed","doi":"10.1109/ICGCIOT.2018.8753080","DOIUrl":null,"url":null,"abstract":"While the major part of wireless communication industry is driven by the motto of ‘Small is Beautiful’, all devices and processing units have been miniaturized owing to Moore’s Law, except antennas. In an attempt to realize compact sized antennas, microstrip antennas have become a prominent and pleasing prospects for this purpose. While transrecieving antennas avoid the need of two separate antennas for transmission and reception, dual band antennas go one step ahead and operate in two bands there by avoiding individual antennas for each band. In this work, a Microstrip patch antenna for WiMax and X band wireless applications is proposed. The antenna shows the resonant behavior at 3.8 and 9 GHz with fractional bandwidths of about 159.2 MHz (3.713 GHz to 3.8722 GHz) for WiMax and 263.4 MHz (8.9053 GHz to 9.1687 GHz) for X band application. The significance of various performance parameters, of proposed antenna’s is analyzed and discussed by various parametric study.","PeriodicalId":269682,"journal":{"name":"2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Design of Dual-band Microstrip antenna for WiMax and X band applications\",\"authors\":\"Prahlad, P. M, R. V, Mohammed Riyaz Ahmed\",\"doi\":\"10.1109/ICGCIOT.2018.8753080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While the major part of wireless communication industry is driven by the motto of ‘Small is Beautiful’, all devices and processing units have been miniaturized owing to Moore’s Law, except antennas. In an attempt to realize compact sized antennas, microstrip antennas have become a prominent and pleasing prospects for this purpose. While transrecieving antennas avoid the need of two separate antennas for transmission and reception, dual band antennas go one step ahead and operate in two bands there by avoiding individual antennas for each band. In this work, a Microstrip patch antenna for WiMax and X band wireless applications is proposed. The antenna shows the resonant behavior at 3.8 and 9 GHz with fractional bandwidths of about 159.2 MHz (3.713 GHz to 3.8722 GHz) for WiMax and 263.4 MHz (8.9053 GHz to 9.1687 GHz) for X band application. The significance of various performance parameters, of proposed antenna’s is analyzed and discussed by various parametric study.\",\"PeriodicalId\":269682,\"journal\":{\"name\":\"2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICGCIOT.2018.8753080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGCIOT.2018.8753080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

虽然无线通信行业的主要部分是由“小即是美”的座右铭驱动的,但由于摩尔定律,除了天线外,所有设备和处理单元都已小型化。在实现天线小型化的尝试中,微带天线已成为这方面的一个突出和令人满意的前景。收发天线避免了需要两个单独的天线来进行发送和接收,而双频天线则更进一步,在两个频段上工作,避免了每个频段都有单独的天线。本文提出了一种适用于WiMax和X波段无线应用的微带贴片天线。该天线在3.8 GHz和9 GHz频段表现出谐振行为,WiMax频段的分数带宽约为159.2 MHz (3.713 GHz至3.8722 GHz), X频段应用的分数带宽约为263.4 MHz (8.9053 GHz至9.1687 GHz)。通过各种参数研究,分析和讨论了天线各性能参数的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of Dual-band Microstrip antenna for WiMax and X band applications
While the major part of wireless communication industry is driven by the motto of ‘Small is Beautiful’, all devices and processing units have been miniaturized owing to Moore’s Law, except antennas. In an attempt to realize compact sized antennas, microstrip antennas have become a prominent and pleasing prospects for this purpose. While transrecieving antennas avoid the need of two separate antennas for transmission and reception, dual band antennas go one step ahead and operate in two bands there by avoiding individual antennas for each band. In this work, a Microstrip patch antenna for WiMax and X band wireless applications is proposed. The antenna shows the resonant behavior at 3.8 and 9 GHz with fractional bandwidths of about 159.2 MHz (3.713 GHz to 3.8722 GHz) for WiMax and 263.4 MHz (8.9053 GHz to 9.1687 GHz) for X band application. The significance of various performance parameters, of proposed antenna’s is analyzed and discussed by various parametric study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信