用监督记忆会话代理回答学生查询

Florian Baud, A. Aussem
{"title":"用监督记忆会话代理回答学生查询","authors":"Florian Baud, A. Aussem","doi":"10.32473/flairs.36.133195","DOIUrl":null,"url":null,"abstract":"This paper describes a discussion-bot that provides answers to students’ questions about the Data Science master program at the University of Lyon 1. Based on a seq2seq architecture combined with a supervised memory module, the bot identifies the questioner’s interest and encodes relevant information from the past conversation to provide personalized answers. A dialogue generator based on hand-crafted dialogues was built to train our model on these synthetic dialogues. The agent and its memory are adaptable to another context by modifying the intention database of the generator. The model was deployed and the results show that the discussion-bot meets most students’ learning requests. We discuss further directions that might be taken to increase the model's effectiveness.","PeriodicalId":302103,"journal":{"name":"The International FLAIRS Conference Proceedings","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Answering Student Queries with a Supervised Memory Conversational Agent\",\"authors\":\"Florian Baud, A. Aussem\",\"doi\":\"10.32473/flairs.36.133195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a discussion-bot that provides answers to students’ questions about the Data Science master program at the University of Lyon 1. Based on a seq2seq architecture combined with a supervised memory module, the bot identifies the questioner’s interest and encodes relevant information from the past conversation to provide personalized answers. A dialogue generator based on hand-crafted dialogues was built to train our model on these synthetic dialogues. The agent and its memory are adaptable to another context by modifying the intention database of the generator. The model was deployed and the results show that the discussion-bot meets most students’ learning requests. We discuss further directions that might be taken to increase the model's effectiveness.\",\"PeriodicalId\":302103,\"journal\":{\"name\":\"The International FLAIRS Conference Proceedings\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International FLAIRS Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32473/flairs.36.133195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International FLAIRS Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32473/flairs.36.133195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一个讨论机器人,它可以回答学生关于里昂大学数据科学硕士课程的问题。基于seq2seq架构和监督记忆模块,机器人识别提问者的兴趣,并从过去的对话中编码相关信息,以提供个性化的答案。我们构建了一个基于手工对话的对话生成器,用来训练我们的模型学习这些合成对话。智能体及其记忆通过修改生成器的意图数据库来适应另一个上下文。对模型进行了部署,结果表明讨论机器人能够满足大多数学生的学习需求。我们讨论了可能采取的进一步方向,以提高模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Answering Student Queries with a Supervised Memory Conversational Agent
This paper describes a discussion-bot that provides answers to students’ questions about the Data Science master program at the University of Lyon 1. Based on a seq2seq architecture combined with a supervised memory module, the bot identifies the questioner’s interest and encodes relevant information from the past conversation to provide personalized answers. A dialogue generator based on hand-crafted dialogues was built to train our model on these synthetic dialogues. The agent and its memory are adaptable to another context by modifying the intention database of the generator. The model was deployed and the results show that the discussion-bot meets most students’ learning requests. We discuss further directions that might be taken to increase the model's effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信