{"title":"鲁棒,紧凑的表示,实时路径规划在不断变化的环境","authors":"Peter Leven, S. Hutchinson","doi":"10.1109/IROS.2001.977190","DOIUrl":null,"url":null,"abstract":"We have previously (2000) developed a new method for generating collision-free paths for robots operating in changing environments. Our approach relies on creating a representation of the configuration space that can be easily modified in real time to account for changes in the environment. In this paper we address the issues of efficiency and robustness. First, we develop a novel, efficient encoding scheme that exploits the redundancy in the map from robot's Euclidean workspace to its configuration space. Then, we introduce the concept of /spl epsi/-robustness, and show how it can be used to enhance the representations that are used by the planner. Along the way, we present quantitative results that illustrate the efficiency and robustness of our approach.","PeriodicalId":319679,"journal":{"name":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Robust, compact representations for real-time path planning in changing environments\",\"authors\":\"Peter Leven, S. Hutchinson\",\"doi\":\"10.1109/IROS.2001.977190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have previously (2000) developed a new method for generating collision-free paths for robots operating in changing environments. Our approach relies on creating a representation of the configuration space that can be easily modified in real time to account for changes in the environment. In this paper we address the issues of efficiency and robustness. First, we develop a novel, efficient encoding scheme that exploits the redundancy in the map from robot's Euclidean workspace to its configuration space. Then, we introduce the concept of /spl epsi/-robustness, and show how it can be used to enhance the representations that are used by the planner. Along the way, we present quantitative results that illustrate the efficiency and robustness of our approach.\",\"PeriodicalId\":319679,\"journal\":{\"name\":\"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2001.977190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2001.977190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust, compact representations for real-time path planning in changing environments
We have previously (2000) developed a new method for generating collision-free paths for robots operating in changing environments. Our approach relies on creating a representation of the configuration space that can be easily modified in real time to account for changes in the environment. In this paper we address the issues of efficiency and robustness. First, we develop a novel, efficient encoding scheme that exploits the redundancy in the map from robot's Euclidean workspace to its configuration space. Then, we introduce the concept of /spl epsi/-robustness, and show how it can be used to enhance the representations that are used by the planner. Along the way, we present quantitative results that illustrate the efficiency and robustness of our approach.