范德华异质结实现铁电隧道结记忆的多尺度模拟:实验与性能预测的比较

Ning Yang, Hung-Yu Chen, Jiangbin Wu, Tong Wu, Jun Cao, X. Ling, H. Wang, J. Guo
{"title":"范德华异质结实现铁电隧道结记忆的多尺度模拟:实验与性能预测的比较","authors":"Ning Yang, Hung-Yu Chen, Jiangbin Wu, Tong Wu, Jun Cao, X. Ling, H. Wang, J. Guo","doi":"10.1109/IEDM13553.2020.9371964","DOIUrl":null,"url":null,"abstract":"Atomically thin van der Waals (vdW) heterojunctions are investigated for ferroelectric tunnel junction (FTJ) device application by combining multiscale simulations from atomistic ab initio to quantum transport device simulations with experimental studies. The simulation reveals that low quantum capacitance of graphene, weak electronic hybridization of vdW bonds, and high interface quality free of dangling bonds can lead to extremely large vdW interface barrier height modulation at the graphene-CuInP2S6 ferroelectric (FE) interface. As a result, the simulated and experimental I-V characteristics show an unprecedented large tunneling electroresistance ratio. The vdW ferroelectric CIPS material further permits the tunneling barrier to be scaled down to atomic thickness. Quantum transport device simulations indicate that scaling of the FE layer thickness exponentially increases the ferroelectric tunneling ON current and reduces the read latency, leading to nanosecond read speed for the FTJs with CIPS bilayer or trilayer. The FTJ device also shows excellent endurance and retention characteristics.","PeriodicalId":415186,"journal":{"name":"2020 IEEE International Electron Devices Meeting (IEDM)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multiscale Simulation of Ferroelectric Tunnel Junction Memory Enabled by van der Waals Heterojunction: Comparison to Experiment and Performance Projection\",\"authors\":\"Ning Yang, Hung-Yu Chen, Jiangbin Wu, Tong Wu, Jun Cao, X. Ling, H. Wang, J. Guo\",\"doi\":\"10.1109/IEDM13553.2020.9371964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atomically thin van der Waals (vdW) heterojunctions are investigated for ferroelectric tunnel junction (FTJ) device application by combining multiscale simulations from atomistic ab initio to quantum transport device simulations with experimental studies. The simulation reveals that low quantum capacitance of graphene, weak electronic hybridization of vdW bonds, and high interface quality free of dangling bonds can lead to extremely large vdW interface barrier height modulation at the graphene-CuInP2S6 ferroelectric (FE) interface. As a result, the simulated and experimental I-V characteristics show an unprecedented large tunneling electroresistance ratio. The vdW ferroelectric CIPS material further permits the tunneling barrier to be scaled down to atomic thickness. Quantum transport device simulations indicate that scaling of the FE layer thickness exponentially increases the ferroelectric tunneling ON current and reduces the read latency, leading to nanosecond read speed for the FTJs with CIPS bilayer or trilayer. The FTJ device also shows excellent endurance and retention characteristics.\",\"PeriodicalId\":415186,\"journal\":{\"name\":\"2020 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM13553.2020.9371964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM13553.2020.9371964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

通过原子从头算到量子输运器件模拟的多尺度模拟与实验研究相结合,研究了原子薄范德华异质结在铁电隧道结(FTJ)器件中的应用。仿真结果表明,石墨烯的低量子电容、vdW键的弱电子杂化和无悬空键的高界面质量可以导致石墨烯- cuinp2s6铁电(FE)界面上出现极大的vdW界面势垒高度调制。结果表明,模拟和实验结果均显示出前所未有的大隧穿电阻比。vdW铁电CIPS材料进一步允许隧道势垒缩小到原子厚度。量子输运器件模拟结果表明,随着FE层厚度的增加,铁电隧穿电流呈指数级增加,读取延迟减少,使得具有CIPS双层或三层的ftj的读取速度达到纳秒级。FTJ装置也显示出优异的耐力和保持特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiscale Simulation of Ferroelectric Tunnel Junction Memory Enabled by van der Waals Heterojunction: Comparison to Experiment and Performance Projection
Atomically thin van der Waals (vdW) heterojunctions are investigated for ferroelectric tunnel junction (FTJ) device application by combining multiscale simulations from atomistic ab initio to quantum transport device simulations with experimental studies. The simulation reveals that low quantum capacitance of graphene, weak electronic hybridization of vdW bonds, and high interface quality free of dangling bonds can lead to extremely large vdW interface barrier height modulation at the graphene-CuInP2S6 ferroelectric (FE) interface. As a result, the simulated and experimental I-V characteristics show an unprecedented large tunneling electroresistance ratio. The vdW ferroelectric CIPS material further permits the tunneling barrier to be scaled down to atomic thickness. Quantum transport device simulations indicate that scaling of the FE layer thickness exponentially increases the ferroelectric tunneling ON current and reduces the read latency, leading to nanosecond read speed for the FTJs with CIPS bilayer or trilayer. The FTJ device also shows excellent endurance and retention characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信