{"title":"曾经的问题:决策树导论","authors":"T. Donovan, R. Mickey","doi":"10.1093/OSO/9780198841296.003.0020","DOIUrl":null,"url":null,"abstract":"In the “Once-ler Problem,” the decision tree is introduced as a very useful technique that can be used to answer a variety of questions and assist in making decisions. This chapter builds on the “Lorax Problem” introduced in Chapter 19, where Bayesian networks were introduced. A decision tree is a graphical representation of the alternatives in a decision. It is closely related to Bayesian networks except that the decision problem takes the shape of a tree instead. The tree itself consists of decision nodes, chance nodes, and end nodes, which provide an outcome. In a decision tree, probabilities associated with chance nodes are conditional probabilities, which Bayes’ Theorem can be used to estimate or update. The calculation of expected values (or expected utility) of competing alternative decisions is provided on a step-by-step basis with an example from The Lorax.","PeriodicalId":285230,"journal":{"name":"Bayesian Statistics for Beginners","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Once-ler Problem: Introduction to Decision Trees\",\"authors\":\"T. Donovan, R. Mickey\",\"doi\":\"10.1093/OSO/9780198841296.003.0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the “Once-ler Problem,” the decision tree is introduced as a very useful technique that can be used to answer a variety of questions and assist in making decisions. This chapter builds on the “Lorax Problem” introduced in Chapter 19, where Bayesian networks were introduced. A decision tree is a graphical representation of the alternatives in a decision. It is closely related to Bayesian networks except that the decision problem takes the shape of a tree instead. The tree itself consists of decision nodes, chance nodes, and end nodes, which provide an outcome. In a decision tree, probabilities associated with chance nodes are conditional probabilities, which Bayes’ Theorem can be used to estimate or update. The calculation of expected values (or expected utility) of competing alternative decisions is provided on a step-by-step basis with an example from The Lorax.\",\"PeriodicalId\":285230,\"journal\":{\"name\":\"Bayesian Statistics for Beginners\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayesian Statistics for Beginners\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/OSO/9780198841296.003.0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Statistics for Beginners","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OSO/9780198841296.003.0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Once-ler Problem: Introduction to Decision Trees
In the “Once-ler Problem,” the decision tree is introduced as a very useful technique that can be used to answer a variety of questions and assist in making decisions. This chapter builds on the “Lorax Problem” introduced in Chapter 19, where Bayesian networks were introduced. A decision tree is a graphical representation of the alternatives in a decision. It is closely related to Bayesian networks except that the decision problem takes the shape of a tree instead. The tree itself consists of decision nodes, chance nodes, and end nodes, which provide an outcome. In a decision tree, probabilities associated with chance nodes are conditional probabilities, which Bayes’ Theorem can be used to estimate or update. The calculation of expected values (or expected utility) of competing alternative decisions is provided on a step-by-step basis with an example from The Lorax.