一个月内每小时高峰负荷的非参数概率密度预测

Y. Bichpuriya, S. Soman, Arige Subramanyam
{"title":"一个月内每小时高峰负荷的非参数概率密度预测","authors":"Y. Bichpuriya, S. Soman, Arige Subramanyam","doi":"10.1109/PSCC.2014.7038464","DOIUrl":null,"url":null,"abstract":"The Load Serving Entity (LSE) requires, for its power procurement portfolio management, accurate peak load forecast in medium term (upto six months ahead). A complete description of the random variable, i.e., load, is provided by probability density function. Hence, we consider the problem of forecasting probability density function of hourly peak load during a month. First, we propose a non-parametric model based on the Alternating Conditional Expectation (ACE) to obtain point forecast. Then, by considering multiple scenarios of the weather variables i.e., temperature-humidity tuples, we obtain probability density forecast of the peak load. Out-of-sample testing is used to demonstrate efficacy of the proposed approach.","PeriodicalId":155801,"journal":{"name":"2014 Power Systems Computation Conference","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Non-parametric probability density forecast of an hourly peak load during a month\",\"authors\":\"Y. Bichpuriya, S. Soman, Arige Subramanyam\",\"doi\":\"10.1109/PSCC.2014.7038464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Load Serving Entity (LSE) requires, for its power procurement portfolio management, accurate peak load forecast in medium term (upto six months ahead). A complete description of the random variable, i.e., load, is provided by probability density function. Hence, we consider the problem of forecasting probability density function of hourly peak load during a month. First, we propose a non-parametric model based on the Alternating Conditional Expectation (ACE) to obtain point forecast. Then, by considering multiple scenarios of the weather variables i.e., temperature-humidity tuples, we obtain probability density forecast of the peak load. Out-of-sample testing is used to demonstrate efficacy of the proposed approach.\",\"PeriodicalId\":155801,\"journal\":{\"name\":\"2014 Power Systems Computation Conference\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Power Systems Computation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PSCC.2014.7038464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Power Systems Computation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PSCC.2014.7038464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

负荷服务实体(LSE)在其电力采购组合管理中需要准确的中期(提前6个月)峰值负荷预测。随机变量即荷载的完整描述由概率密度函数提供。因此,我们考虑一个月内小时峰值负荷的概率密度函数预测问题。首先,我们提出了一种基于交替条件期望(ACE)的非参数模型来获得点预测。然后,通过考虑温度-湿度元组等多种天气变量的情景,得到峰值负荷的概率密度预测。样本外测试用于证明所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-parametric probability density forecast of an hourly peak load during a month
The Load Serving Entity (LSE) requires, for its power procurement portfolio management, accurate peak load forecast in medium term (upto six months ahead). A complete description of the random variable, i.e., load, is provided by probability density function. Hence, we consider the problem of forecasting probability density function of hourly peak load during a month. First, we propose a non-parametric model based on the Alternating Conditional Expectation (ACE) to obtain point forecast. Then, by considering multiple scenarios of the weather variables i.e., temperature-humidity tuples, we obtain probability density forecast of the peak load. Out-of-sample testing is used to demonstrate efficacy of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信