基于时间相关主成分的降维方法分析产品干预对移动应用用户参与的影响

Lior Turgeman, Otis Smart
{"title":"基于时间相关主成分的降维方法分析产品干预对移动应用用户参与的影响","authors":"Lior Turgeman, Otis Smart","doi":"10.1109/SERVICES.2018.00019","DOIUrl":null,"url":null,"abstract":"We propose a new framework of identifying mobile applications interventions (e.g., updates, new features, or new versions) with positive (or negative) users' attitudes, by analyzing temporal changes in a defined set of usage metrics, yielding a general metric, a Mobile Application User Engagement (MAUE). The new metric is a linear combination of user engagement time-series metrics, accounting for the largest amount of the variance in usage data via principal component analysis (PCA). Our proposed approach has been applied to 1533651 behavioral data records of The Weather Company (TWC) IOS users, to analyze the influence of an app update that occurred during the time interval of data collection. Our results indicate that the time-dependent fluctuations of the MAUE trends for the epochs before and after the app update are characterized with a power-law decrease, where a faster decrease is observed for the time period after app update and indicates a higher MAUE score for this time period.","PeriodicalId":130225,"journal":{"name":"2018 IEEE World Congress on Services (SERVICES)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Time-Dependent Principal Components-Based Dimension Reduction Approach to Analyzing the Influence of Product Interventions on User Engagement with Mobile Applications\",\"authors\":\"Lior Turgeman, Otis Smart\",\"doi\":\"10.1109/SERVICES.2018.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new framework of identifying mobile applications interventions (e.g., updates, new features, or new versions) with positive (or negative) users' attitudes, by analyzing temporal changes in a defined set of usage metrics, yielding a general metric, a Mobile Application User Engagement (MAUE). The new metric is a linear combination of user engagement time-series metrics, accounting for the largest amount of the variance in usage data via principal component analysis (PCA). Our proposed approach has been applied to 1533651 behavioral data records of The Weather Company (TWC) IOS users, to analyze the influence of an app update that occurred during the time interval of data collection. Our results indicate that the time-dependent fluctuations of the MAUE trends for the epochs before and after the app update are characterized with a power-law decrease, where a faster decrease is observed for the time period after app update and indicates a higher MAUE score for this time period.\",\"PeriodicalId\":130225,\"journal\":{\"name\":\"2018 IEEE World Congress on Services (SERVICES)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE World Congress on Services (SERVICES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SERVICES.2018.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE World Congress on Services (SERVICES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERVICES.2018.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一个新的框架,通过分析一组定义的使用指标的时间变化,确定具有积极(或消极)用户态度的移动应用干预(例如,更新,新功能或新版本),从而产生一个通用指标,即移动应用用户参与度(MAUE)。新指标是用户粘性时间序列指标的线性组合,通过主成分分析(PCA)计算使用数据的最大方差。我们提出的方法已应用于1533651个TWC IOS用户的行为数据记录,以分析在数据收集时间间隔内发生的应用程序更新的影响。我们的研究结果表明,应用更新前后各时期的MAUE趋势随时间的波动呈现幂律下降的特征,其中应用更新后的时间段下降更快,表明该时间段的MAUE得分更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Time-Dependent Principal Components-Based Dimension Reduction Approach to Analyzing the Influence of Product Interventions on User Engagement with Mobile Applications
We propose a new framework of identifying mobile applications interventions (e.g., updates, new features, or new versions) with positive (or negative) users' attitudes, by analyzing temporal changes in a defined set of usage metrics, yielding a general metric, a Mobile Application User Engagement (MAUE). The new metric is a linear combination of user engagement time-series metrics, accounting for the largest amount of the variance in usage data via principal component analysis (PCA). Our proposed approach has been applied to 1533651 behavioral data records of The Weather Company (TWC) IOS users, to analyze the influence of an app update that occurred during the time interval of data collection. Our results indicate that the time-dependent fluctuations of the MAUE trends for the epochs before and after the app update are characterized with a power-law decrease, where a faster decrease is observed for the time period after app update and indicates a higher MAUE score for this time period.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信