QNET旋转倒立摆在MATLAB中的数学建模与控制及在实验室视图下的实时实现

R. Sritharan, M. Sivapalanirajan, M. Willjuiceiruthayarajan
{"title":"QNET旋转倒立摆在MATLAB中的数学建模与控制及在实验室视图下的实时实现","authors":"R. Sritharan, M. Sivapalanirajan, M. Willjuiceiruthayarajan","doi":"10.1109/ICICCT.2018.8473139","DOIUrl":null,"url":null,"abstract":"The objective of this project is the design and comparison of the various controllers for QNET (Quanser NI ELVIS Trainer) Rotary Inverted Pendulum (RIP) Board 2.0 for NI ELVIS. The RIP system is a multivariable mode with highly nonlinear behavior. It is used in the design of highly complex applications like automatic aircraft landing system, and humanoid robot stabilization. In this work, the RIP model is mathematically derived using motion equation of Euler-Lagrange. For controlling the system, PP (pole placement) and LQR(Linear Quadratic Regulator) controllers are designed and implemented in MATLAB for the balancing of the pendulum arm in up-right position. A comparative study was made for analyzing the performance of the controllers in terms of settling time and overshoot range, etc. Based on designed parameters using MATLAB simulation, the control ofreal time Rotary inverted pendulum arm is implemented in LabVIEW platform interfaced with NI ELVIS. From the experimental results of MATLAB simulation and LabVIEWinterfacing, the LQR controller was better than the PP controller in controlling the pendulum arm in upright position.","PeriodicalId":334934,"journal":{"name":"2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mathematical Modeling and Control of QNET Rotary Inverted Pendulum in MATLAB and Real Time Implementation in Lab View Using ELVIS\",\"authors\":\"R. Sritharan, M. Sivapalanirajan, M. Willjuiceiruthayarajan\",\"doi\":\"10.1109/ICICCT.2018.8473139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this project is the design and comparison of the various controllers for QNET (Quanser NI ELVIS Trainer) Rotary Inverted Pendulum (RIP) Board 2.0 for NI ELVIS. The RIP system is a multivariable mode with highly nonlinear behavior. It is used in the design of highly complex applications like automatic aircraft landing system, and humanoid robot stabilization. In this work, the RIP model is mathematically derived using motion equation of Euler-Lagrange. For controlling the system, PP (pole placement) and LQR(Linear Quadratic Regulator) controllers are designed and implemented in MATLAB for the balancing of the pendulum arm in up-right position. A comparative study was made for analyzing the performance of the controllers in terms of settling time and overshoot range, etc. Based on designed parameters using MATLAB simulation, the control ofreal time Rotary inverted pendulum arm is implemented in LabVIEW platform interfaced with NI ELVIS. From the experimental results of MATLAB simulation and LabVIEWinterfacing, the LQR controller was better than the PP controller in controlling the pendulum arm in upright position.\",\"PeriodicalId\":334934,\"journal\":{\"name\":\"2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICCT.2018.8473139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICCT.2018.8473139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这个项目的目的是设计和比较各种控制器QNET (qanser NI ELVIS Trainer)旋转倒立摆(RIP)板2.0的NI ELVIS。RIP系统是一个具有高度非线性行为的多变量模式。它被用于设计高度复杂的应用,如飞机自动着陆系统,人形机器人稳定。本文利用欧拉-拉格朗日运动方程对RIP模型进行数学推导。为了控制系统,设计了PP(极点放置)控制器和LQR(线性二次型调节器)控制器,并在MATLAB中实现了摆臂上下位置的平衡。对比分析了两种控制器在稳定时间、超调范围等方面的性能。基于设计参数,利用MATLAB仿真,在LabVIEW平台上与NI ELVIS接口,实现了对旋转倒立臂的实时控制。从MATLAB仿真和labview接口的实验结果来看,LQR控制器在控制摆臂垂直位置方面优于PP控制器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical Modeling and Control of QNET Rotary Inverted Pendulum in MATLAB and Real Time Implementation in Lab View Using ELVIS
The objective of this project is the design and comparison of the various controllers for QNET (Quanser NI ELVIS Trainer) Rotary Inverted Pendulum (RIP) Board 2.0 for NI ELVIS. The RIP system is a multivariable mode with highly nonlinear behavior. It is used in the design of highly complex applications like automatic aircraft landing system, and humanoid robot stabilization. In this work, the RIP model is mathematically derived using motion equation of Euler-Lagrange. For controlling the system, PP (pole placement) and LQR(Linear Quadratic Regulator) controllers are designed and implemented in MATLAB for the balancing of the pendulum arm in up-right position. A comparative study was made for analyzing the performance of the controllers in terms of settling time and overshoot range, etc. Based on designed parameters using MATLAB simulation, the control ofreal time Rotary inverted pendulum arm is implemented in LabVIEW platform interfaced with NI ELVIS. From the experimental results of MATLAB simulation and LabVIEWinterfacing, the LQR controller was better than the PP controller in controlling the pendulum arm in upright position.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信