基于神经网络滑模控制的延迟混沌系统滞后同步

R. Mei, Qingxian Wu, Changsheng Jiang
{"title":"基于神经网络滑模控制的延迟混沌系统滞后同步","authors":"R. Mei, Qingxian Wu, Changsheng Jiang","doi":"10.1109/IWCFTA.2010.95","DOIUrl":null,"url":null,"abstract":"In this paper, the sliding-mode lag synchronization control scheme is proposed based on the neural network to synchronize two different delayed chaotic systems. An integral delayed sliding surface is presented to design the sliding mode control. The lag synchronization controller is achieved by combining the RBF (radial basis function) neural network with sliding-mode control. Numerical simulations are presented to demonstrate the effectiveness of the proposed sliding-mode lag synchronization control scheme.","PeriodicalId":157339,"journal":{"name":"2010 International Workshop on Chaos-Fractal Theories and Applications","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lag Synchronization of Delayed Chaotic Systems Using Neural Network-Based Sliding-Mode Control\",\"authors\":\"R. Mei, Qingxian Wu, Changsheng Jiang\",\"doi\":\"10.1109/IWCFTA.2010.95\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the sliding-mode lag synchronization control scheme is proposed based on the neural network to synchronize two different delayed chaotic systems. An integral delayed sliding surface is presented to design the sliding mode control. The lag synchronization controller is achieved by combining the RBF (radial basis function) neural network with sliding-mode control. Numerical simulations are presented to demonstrate the effectiveness of the proposed sliding-mode lag synchronization control scheme.\",\"PeriodicalId\":157339,\"journal\":{\"name\":\"2010 International Workshop on Chaos-Fractal Theories and Applications\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Workshop on Chaos-Fractal Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCFTA.2010.95\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Workshop on Chaos-Fractal Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCFTA.2010.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于神经网络的滑模滞后同步控制方案,用于同步两个不同时滞混沌系统。提出了一种积分延迟滑动曲面来设计滑模控制。将径向基函数(RBF)神经网络与滑模控制相结合,实现滞后同步控制器。数值仿真验证了所提出的滑模滞后同步控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lag Synchronization of Delayed Chaotic Systems Using Neural Network-Based Sliding-Mode Control
In this paper, the sliding-mode lag synchronization control scheme is proposed based on the neural network to synchronize two different delayed chaotic systems. An integral delayed sliding surface is presented to design the sliding mode control. The lag synchronization controller is achieved by combining the RBF (radial basis function) neural network with sliding-mode control. Numerical simulations are presented to demonstrate the effectiveness of the proposed sliding-mode lag synchronization control scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信