基于阈值的朴素贝叶斯算法的优化

Xin Wang, Hua Jiang
{"title":"基于阈值的朴素贝叶斯算法的优化","authors":"Xin Wang, Hua Jiang","doi":"10.1109/WGEC.2009.161","DOIUrl":null,"url":null,"abstract":"In order to realize the text classification and spam filtering, the Naive Bayesian algorithm estimate what class are the text in by basing on some statistical probability values in accordance with the characteristic in straining sample, but it is easy to expose the overflow problem, this article will optimize the algorithm by setting the threshold, the optimization strategy is comparing the times that the probability of each class exceed the threshold and the accumulated probability values at the same times. Compare with the existing method, experimental result show the new method not only can solve the overflow problem, but also improve the classification effect effectively.","PeriodicalId":277950,"journal":{"name":"2009 Third International Conference on Genetic and Evolutionary Computing","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Optimization of Threshold-Based Naive Bayesian Algorithm\",\"authors\":\"Xin Wang, Hua Jiang\",\"doi\":\"10.1109/WGEC.2009.161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to realize the text classification and spam filtering, the Naive Bayesian algorithm estimate what class are the text in by basing on some statistical probability values in accordance with the characteristic in straining sample, but it is easy to expose the overflow problem, this article will optimize the algorithm by setting the threshold, the optimization strategy is comparing the times that the probability of each class exceed the threshold and the accumulated probability values at the same times. Compare with the existing method, experimental result show the new method not only can solve the overflow problem, but also improve the classification effect effectively.\",\"PeriodicalId\":277950,\"journal\":{\"name\":\"2009 Third International Conference on Genetic and Evolutionary Computing\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Third International Conference on Genetic and Evolutionary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WGEC.2009.161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Third International Conference on Genetic and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WGEC.2009.161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了实现文本分类和垃圾邮件过滤,朴素贝叶斯算法根据抽取样本的特征,根据一些统计概率值来估计文本属于什么类别,但容易暴露出溢出问题,本文将通过设置阈值对算法进行优化。优化策略是将每个类别的概率超过阈值的次数与同时累积的概率值进行比较。实验结果表明,与现有的分类方法相比,新方法不仅可以有效地解决溢出问题,而且可以有效地提高分类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Optimization of Threshold-Based Naive Bayesian Algorithm
In order to realize the text classification and spam filtering, the Naive Bayesian algorithm estimate what class are the text in by basing on some statistical probability values in accordance with the characteristic in straining sample, but it is easy to expose the overflow problem, this article will optimize the algorithm by setting the threshold, the optimization strategy is comparing the times that the probability of each class exceed the threshold and the accumulated probability values at the same times. Compare with the existing method, experimental result show the new method not only can solve the overflow problem, but also improve the classification effect effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信