快速除法使用准确的商近似值,以减少迭代次数

D. Wong, M. Flynn
{"title":"快速除法使用准确的商近似值,以减少迭代次数","authors":"D. Wong, M. Flynn","doi":"10.1109/ARITH.1991.145559","DOIUrl":null,"url":null,"abstract":"A class of iterative integer division algorithms is presented based on lookup table Taylor-series approximations to the reciprocal. The algorithm iterates by using the reciprocal to find an approximate quotient and then subtracting the quotient multiplied by the divisor from the dividend to find a remaining dividend. Fast implementations can produce an average of either 14 or 27 b per iteration, depending on whether the basic or advanced version of this method is implemented. Detailed analyses are presented to support the claimed accuracy per iteration. Speed estimates using state-of-the-art ECL (emitted coupled logic) components show that this method is faster than the Newton-Raphson technique and can produce 53-b quotients of 53-b numbers in about 28 or 22 ns for the basic and advanced versions.<<ETX>>","PeriodicalId":190650,"journal":{"name":"[1991] Proceedings 10th IEEE Symposium on Computer Arithmetic","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"84","resultStr":"{\"title\":\"Fast division using accurate quotient approximations to reduce the number of iterations\",\"authors\":\"D. Wong, M. Flynn\",\"doi\":\"10.1109/ARITH.1991.145559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A class of iterative integer division algorithms is presented based on lookup table Taylor-series approximations to the reciprocal. The algorithm iterates by using the reciprocal to find an approximate quotient and then subtracting the quotient multiplied by the divisor from the dividend to find a remaining dividend. Fast implementations can produce an average of either 14 or 27 b per iteration, depending on whether the basic or advanced version of this method is implemented. Detailed analyses are presented to support the claimed accuracy per iteration. Speed estimates using state-of-the-art ECL (emitted coupled logic) components show that this method is faster than the Newton-Raphson technique and can produce 53-b quotients of 53-b numbers in about 28 or 22 ns for the basic and advanced versions.<<ETX>>\",\"PeriodicalId\":190650,\"journal\":{\"name\":\"[1991] Proceedings 10th IEEE Symposium on Computer Arithmetic\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"84\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings 10th IEEE Symposium on Computer Arithmetic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1991.145559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 10th IEEE Symposium on Computer Arithmetic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1991.145559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 84

摘要

提出了一类基于查找表泰勒级数近似的迭代整数除法算法。该算法通过使用倒数来找到一个近似商,然后从被除数中减去这个商乘以除数来找到剩余的被除数。快速实现每次迭代平均可以产生14或27b,这取决于是否实现了该方法的基本版本或高级版本。提出了详细的分析来支持每次迭代所声称的准确性。使用最先进的ECL(发射耦合逻辑)组件的速度估计表明,这种方法比牛顿-拉夫森技术更快,并且对于基本版本和高级版本,可以在大约28或22 ns内产生53-b数的53-b商。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast division using accurate quotient approximations to reduce the number of iterations
A class of iterative integer division algorithms is presented based on lookup table Taylor-series approximations to the reciprocal. The algorithm iterates by using the reciprocal to find an approximate quotient and then subtracting the quotient multiplied by the divisor from the dividend to find a remaining dividend. Fast implementations can produce an average of either 14 or 27 b per iteration, depending on whether the basic or advanced version of this method is implemented. Detailed analyses are presented to support the claimed accuracy per iteration. Speed estimates using state-of-the-art ECL (emitted coupled logic) components show that this method is faster than the Newton-Raphson technique and can produce 53-b quotients of 53-b numbers in about 28 or 22 ns for the basic and advanced versions.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信