LightESD:用于边缘计算的全自动轻量级异常检测框架

Ronit Das, Tie Luo
{"title":"LightESD:用于边缘计算的全自动轻量级异常检测框架","authors":"Ronit Das, Tie Luo","doi":"10.1109/EDGE60047.2023.00032","DOIUrl":null,"url":null,"abstract":"Anomaly detection is widely used in a broad range of domains from cybersecurity to manufacturing, finance, and so on. Deep learning based anomaly detection has recently drawn much attention because of its superior capability of recognizing complex data patterns and identifying outliers accurately. However, deep learning models are typically iteratively optimized in a central server with input data gathered from edge devices, and such data transfer between edge devices and the central server impose substantial overhead on the network and incur additional latency and energy consumption. To overcome this problem, we propose a fully-automated, lightweight, statistical learning based anomaly detection framework called LightESD. It is an on-device learning method without the need for data transfer between edge and server, and is extremely lightweight that most low-end edge devices can easily afford with negligible delay, CPU/memory utilization, and power consumption. Yet, it achieves highly competitive detection accuracy. Another salient feature is that it can auto-adapt to probably any dataset without manually setting or configuring model parameters or hyperparameters, which is a drawback of most existing methods. We focus on time series data due to its pervasiveness in edge applications such as IoT. Our evaluation demonstrates that LightESD outperforms other SOTA methods on detection accuracy, efficiency, and resource consumption. Additionally, its fully automated feature gives it another competitive advantage in terms of practical usability and generalizability.","PeriodicalId":369407,"journal":{"name":"2023 IEEE International Conference on Edge Computing and Communications (EDGE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LightESD: Fully-Automated and Lightweight Anomaly Detection Framework for Edge Computing\",\"authors\":\"Ronit Das, Tie Luo\",\"doi\":\"10.1109/EDGE60047.2023.00032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomaly detection is widely used in a broad range of domains from cybersecurity to manufacturing, finance, and so on. Deep learning based anomaly detection has recently drawn much attention because of its superior capability of recognizing complex data patterns and identifying outliers accurately. However, deep learning models are typically iteratively optimized in a central server with input data gathered from edge devices, and such data transfer between edge devices and the central server impose substantial overhead on the network and incur additional latency and energy consumption. To overcome this problem, we propose a fully-automated, lightweight, statistical learning based anomaly detection framework called LightESD. It is an on-device learning method without the need for data transfer between edge and server, and is extremely lightweight that most low-end edge devices can easily afford with negligible delay, CPU/memory utilization, and power consumption. Yet, it achieves highly competitive detection accuracy. Another salient feature is that it can auto-adapt to probably any dataset without manually setting or configuring model parameters or hyperparameters, which is a drawback of most existing methods. We focus on time series data due to its pervasiveness in edge applications such as IoT. Our evaluation demonstrates that LightESD outperforms other SOTA methods on detection accuracy, efficiency, and resource consumption. Additionally, its fully automated feature gives it another competitive advantage in terms of practical usability and generalizability.\",\"PeriodicalId\":369407,\"journal\":{\"name\":\"2023 IEEE International Conference on Edge Computing and Communications (EDGE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Edge Computing and Communications (EDGE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDGE60047.2023.00032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Edge Computing and Communications (EDGE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDGE60047.2023.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

异常检测在网络安全、制造、金融等领域有着广泛的应用。近年来,基于深度学习的异常检测因其具有识别复杂数据模式和准确识别异常点的优越能力而备受关注。然而,深度学习模型通常在使用从边缘设备收集的输入数据的中央服务器中进行迭代优化,并且边缘设备和中央服务器之间的这种数据传输会给网络带来大量开销,并导致额外的延迟和能耗。为了克服这个问题,我们提出了一个完全自动化的、轻量级的、基于统计学习的异常检测框架,称为LightESD。它是一种设备上的学习方法,不需要在边缘和服务器之间传输数据,而且非常轻量级,大多数低端边缘设备都可以轻松负担得起,延迟、CPU/内存利用率和功耗可以忽略不计。然而,它达到了极具竞争力的检测精度。另一个显著特征是它可以自动适应任何数据集,而无需手动设置或配置模型参数或超参数,这是大多数现有方法的缺点。我们专注于时间序列数据,因为它在物联网等边缘应用中无处不在。我们的评估表明,LightESD在检测精度、效率和资源消耗方面优于其他SOTA方法。此外,它的全自动特性使它在实际可用性和通用性方面具有另一个竞争优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LightESD: Fully-Automated and Lightweight Anomaly Detection Framework for Edge Computing
Anomaly detection is widely used in a broad range of domains from cybersecurity to manufacturing, finance, and so on. Deep learning based anomaly detection has recently drawn much attention because of its superior capability of recognizing complex data patterns and identifying outliers accurately. However, deep learning models are typically iteratively optimized in a central server with input data gathered from edge devices, and such data transfer between edge devices and the central server impose substantial overhead on the network and incur additional latency and energy consumption. To overcome this problem, we propose a fully-automated, lightweight, statistical learning based anomaly detection framework called LightESD. It is an on-device learning method without the need for data transfer between edge and server, and is extremely lightweight that most low-end edge devices can easily afford with negligible delay, CPU/memory utilization, and power consumption. Yet, it achieves highly competitive detection accuracy. Another salient feature is that it can auto-adapt to probably any dataset without manually setting or configuring model parameters or hyperparameters, which is a drawback of most existing methods. We focus on time series data due to its pervasiveness in edge applications such as IoT. Our evaluation demonstrates that LightESD outperforms other SOTA methods on detection accuracy, efficiency, and resource consumption. Additionally, its fully automated feature gives it another competitive advantage in terms of practical usability and generalizability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信