基于变分平均场退火的稀疏图因子模型贝叶斯学习

Ryo Yoshida, M. West
{"title":"基于变分平均场退火的稀疏图因子模型贝叶斯学习","authors":"Ryo Yoshida, M. West","doi":"10.5555/1756006.1859910","DOIUrl":null,"url":null,"abstract":"We describe a class of sparse latent factor models, called graphical factor models (GFMs), and relevant sparse learning algorithms for posterior mode estimation. Linear, Gaussian GFMs have sparse, orthogonal factor loadings matrices, that, in addition to sparsity of the implied covariance matrices, also induce conditional independence structures via zeros in the implied precision matrices. We describe the models and their use for robust estimation of sparse latent factor structure and data/signal reconstruction. We develop computational algorithms for model exploration and posterior mode search, addressing the hard combinatorial optimization involved in the search over a huge space of potential sparse configurations. A mean-field variational technique coupled with annealing is developed to successively generate \"artificial\" posterior distributions that, at the limiting temperature in the annealing schedule, define required posterior modes in the GFM parameter space. Several detailed empirical studies and comparisons to related approaches are discussed, including analyses of handwritten digit image and cancer gene expression data.","PeriodicalId":314696,"journal":{"name":"Journal of machine learning research : JMLR","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Bayesian Learning in Sparse Graphical Factor Models via Variational Mean-Field Annealing\",\"authors\":\"Ryo Yoshida, M. West\",\"doi\":\"10.5555/1756006.1859910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a class of sparse latent factor models, called graphical factor models (GFMs), and relevant sparse learning algorithms for posterior mode estimation. Linear, Gaussian GFMs have sparse, orthogonal factor loadings matrices, that, in addition to sparsity of the implied covariance matrices, also induce conditional independence structures via zeros in the implied precision matrices. We describe the models and their use for robust estimation of sparse latent factor structure and data/signal reconstruction. We develop computational algorithms for model exploration and posterior mode search, addressing the hard combinatorial optimization involved in the search over a huge space of potential sparse configurations. A mean-field variational technique coupled with annealing is developed to successively generate \\\"artificial\\\" posterior distributions that, at the limiting temperature in the annealing schedule, define required posterior modes in the GFM parameter space. Several detailed empirical studies and comparisons to related approaches are discussed, including analyses of handwritten digit image and cancer gene expression data.\",\"PeriodicalId\":314696,\"journal\":{\"name\":\"Journal of machine learning research : JMLR\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of machine learning research : JMLR\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/1756006.1859910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of machine learning research : JMLR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/1756006.1859910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

我们描述了一类稀疏潜在因子模型,称为图形因子模型(GFMs),以及用于后验模式估计的相关稀疏学习算法。线性高斯模型具有稀疏的正交因子加载矩阵,除了隐含协方差矩阵的稀疏性外,还通过隐含精度矩阵中的零诱导条件独立结构。我们描述了模型及其在稀疏潜在因素结构和数据/信号重建的鲁棒估计中的应用。我们开发了模型探索和后验模式搜索的计算算法,解决了在巨大的潜在稀疏配置空间中搜索所涉及的硬组合优化问题。采用平均场变分技术与退火相结合,连续生成“人工”后验分布,在退火计划中的极限温度下,定义GFM参数空间中所需的后验模态。讨论了几个详细的实证研究和相关方法的比较,包括手写体数字图像和癌症基因表达数据的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Learning in Sparse Graphical Factor Models via Variational Mean-Field Annealing
We describe a class of sparse latent factor models, called graphical factor models (GFMs), and relevant sparse learning algorithms for posterior mode estimation. Linear, Gaussian GFMs have sparse, orthogonal factor loadings matrices, that, in addition to sparsity of the implied covariance matrices, also induce conditional independence structures via zeros in the implied precision matrices. We describe the models and their use for robust estimation of sparse latent factor structure and data/signal reconstruction. We develop computational algorithms for model exploration and posterior mode search, addressing the hard combinatorial optimization involved in the search over a huge space of potential sparse configurations. A mean-field variational technique coupled with annealing is developed to successively generate "artificial" posterior distributions that, at the limiting temperature in the annealing schedule, define required posterior modes in the GFM parameter space. Several detailed empirical studies and comparisons to related approaches are discussed, including analyses of handwritten digit image and cancer gene expression data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信