{"title":"列车优化运行方法的智能计算研究","authors":"J. Weidong, Li Chongwei, Hu Fei, Jin Fan","doi":"10.1109/IWADS.2000.880893","DOIUrl":null,"url":null,"abstract":"Energy-saving train operations are significant both in theory and in applications, but computing the optimization of train operations is very difficult and complex. The optimization computation problem of energy-saving train operations on an undulating-slope line is discussed by means of an intelligent computation model in this paper. To generate the optimal train operation diagram, an intelligent computation model combining local optimization with global optimization is proposed. The local optimization's numerical functions are obtained from the simulation computation, and the construction of those data is realized by a neural network. The global optimization computation, using a genetic algorithm, generates the train operation diagram. Theoretical analysis and simulation experiments show that the result is satisfactory. Moreover, compared to other methods, not only is the energy saving greater but the computational efficiency is greatly improved too.","PeriodicalId":248775,"journal":{"name":"Proceedings 2000 International Workshop on Autonomous Decentralized System (Cat. No.00EX449)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A study on intelligent computation of methods of optimization operation for train\",\"authors\":\"J. Weidong, Li Chongwei, Hu Fei, Jin Fan\",\"doi\":\"10.1109/IWADS.2000.880893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy-saving train operations are significant both in theory and in applications, but computing the optimization of train operations is very difficult and complex. The optimization computation problem of energy-saving train operations on an undulating-slope line is discussed by means of an intelligent computation model in this paper. To generate the optimal train operation diagram, an intelligent computation model combining local optimization with global optimization is proposed. The local optimization's numerical functions are obtained from the simulation computation, and the construction of those data is realized by a neural network. The global optimization computation, using a genetic algorithm, generates the train operation diagram. Theoretical analysis and simulation experiments show that the result is satisfactory. Moreover, compared to other methods, not only is the energy saving greater but the computational efficiency is greatly improved too.\",\"PeriodicalId\":248775,\"journal\":{\"name\":\"Proceedings 2000 International Workshop on Autonomous Decentralized System (Cat. No.00EX449)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2000 International Workshop on Autonomous Decentralized System (Cat. No.00EX449)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWADS.2000.880893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2000 International Workshop on Autonomous Decentralized System (Cat. No.00EX449)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWADS.2000.880893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A study on intelligent computation of methods of optimization operation for train
Energy-saving train operations are significant both in theory and in applications, but computing the optimization of train operations is very difficult and complex. The optimization computation problem of energy-saving train operations on an undulating-slope line is discussed by means of an intelligent computation model in this paper. To generate the optimal train operation diagram, an intelligent computation model combining local optimization with global optimization is proposed. The local optimization's numerical functions are obtained from the simulation computation, and the construction of those data is realized by a neural network. The global optimization computation, using a genetic algorithm, generates the train operation diagram. Theoretical analysis and simulation experiments show that the result is satisfactory. Moreover, compared to other methods, not only is the energy saving greater but the computational efficiency is greatly improved too.