Mizo视觉基因组1.0:英语-Mizo多模态神经机器翻译数据集

Vanlalmuansangi Khenglawt, Sahinur Rahman Laskar, Riyanka Manna, Partha Pakray, Ajoy Kumar Khan
{"title":"Mizo视觉基因组1.0:英语-Mizo多模态神经机器翻译数据集","authors":"Vanlalmuansangi Khenglawt, Sahinur Rahman Laskar, Riyanka Manna, Partha Pakray, Ajoy Kumar Khan","doi":"10.1109/SILCON55242.2022.10028882","DOIUrl":null,"url":null,"abstract":"Multimodal machine translation (MMT) handles extracting information from several modalities, considering the presumption that the extra modalities will include beneficial alternative perspectives of the input data. Regardless of its significant benefits, it is challenging to implement an MMT system for several languages, mainly due to the scarcity of the availability of multimodal datasets. As for the low-resource English-Mizo pair, the standard multimodal corpus is not available. Therefore, in this paper, we have developed a Mizo Visual Genome 1.0 (MVG 1.0) dataset for English-Mizo MMT, including images with corresponding bilingual textual descriptions. According to automated assessment measures, the performance of multimodal neural machine translation (MNMT) is better than text-only neural machine translation. To the best of our knowledge, our English-Mizo MMT system is the pioneering work in this approach, and as such, it can serve as a baseline for future study in MMT for the low-resource English-Mizo language pair.","PeriodicalId":183947,"journal":{"name":"2022 IEEE Silchar Subsection Conference (SILCON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mizo Visual Genome 1.0 : A Dataset for English-Mizo Multimodal Neural Machine Translation\",\"authors\":\"Vanlalmuansangi Khenglawt, Sahinur Rahman Laskar, Riyanka Manna, Partha Pakray, Ajoy Kumar Khan\",\"doi\":\"10.1109/SILCON55242.2022.10028882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multimodal machine translation (MMT) handles extracting information from several modalities, considering the presumption that the extra modalities will include beneficial alternative perspectives of the input data. Regardless of its significant benefits, it is challenging to implement an MMT system for several languages, mainly due to the scarcity of the availability of multimodal datasets. As for the low-resource English-Mizo pair, the standard multimodal corpus is not available. Therefore, in this paper, we have developed a Mizo Visual Genome 1.0 (MVG 1.0) dataset for English-Mizo MMT, including images with corresponding bilingual textual descriptions. According to automated assessment measures, the performance of multimodal neural machine translation (MNMT) is better than text-only neural machine translation. To the best of our knowledge, our English-Mizo MMT system is the pioneering work in this approach, and as such, it can serve as a baseline for future study in MMT for the low-resource English-Mizo language pair.\",\"PeriodicalId\":183947,\"journal\":{\"name\":\"2022 IEEE Silchar Subsection Conference (SILCON)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Silchar Subsection Conference (SILCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SILCON55242.2022.10028882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Silchar Subsection Conference (SILCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SILCON55242.2022.10028882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多模态机器翻译(MMT)处理从多个模态提取信息,考虑到额外的模态将包括输入数据的有益的替代视角的假设。尽管MMT有很大的好处,但要实现多种语言的MMT系统是具有挑战性的,这主要是由于多模态数据集的可用性缺乏。对于资源较少的英米语对,没有标准的多模态语料库。因此,在本文中,我们开发了一个Mizo视觉基因组1.0 (MVG 1.0)数据集,用于英语-Mizo MMT,包括带有相应双语文本描述的图像。根据自动化评价指标,多模态神经机器翻译(MNMT)的翻译性能优于纯文本神经机器翻译。据我们所知,我们的英语-米佐语MMT系统是该方法的先驱,因此,它可以作为未来低资源英语-米佐语对MMT研究的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mizo Visual Genome 1.0 : A Dataset for English-Mizo Multimodal Neural Machine Translation
Multimodal machine translation (MMT) handles extracting information from several modalities, considering the presumption that the extra modalities will include beneficial alternative perspectives of the input data. Regardless of its significant benefits, it is challenging to implement an MMT system for several languages, mainly due to the scarcity of the availability of multimodal datasets. As for the low-resource English-Mizo pair, the standard multimodal corpus is not available. Therefore, in this paper, we have developed a Mizo Visual Genome 1.0 (MVG 1.0) dataset for English-Mizo MMT, including images with corresponding bilingual textual descriptions. According to automated assessment measures, the performance of multimodal neural machine translation (MNMT) is better than text-only neural machine translation. To the best of our knowledge, our English-Mizo MMT system is the pioneering work in this approach, and as such, it can serve as a baseline for future study in MMT for the low-resource English-Mizo language pair.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信