{"title":"安全云辅助网联汽车和车载物联网授权框架","authors":"Maanak Gupta, R. Sandhu","doi":"10.1145/3205977.3205994","DOIUrl":null,"url":null,"abstract":"Internet of Things has become a predominant phenomenon in every sphere of smart life. Connected Cars and Vehicular Internet of Things, which involves communication and data exchange between vehicles, traffic infrastructure or other entities are pivotal to realize the vision of smart city and intelligent transportation. Vehicular Cloud offers a promising architecture wherein storage and processing capabilities of smart objects are utilized to provide on-the-fly fog platform. Researchers have demonstrated vulnerabilities in this emerging vehicular IoT ecosystem, where data has been stolen from critical sensors and smart vehicles controlled remotely. Security and privacy is important in Internet of Vehicles (IoV) where access to electronic control units, applications and data in connected cars should only be authorized to legitimate users, sensors or vehicles. In this paper, we propose an authorization framework to secure this dynamic system where interactions among entities is not pre-defined. We provide an extended access control oriented (E-ACO) architecture relevant to IoV and discuss the need of vehicular clouds in this time and location sensitive environment. We outline approaches to different access control models which can be enforced at various layers of E-ACO architecture and in the authorization framework. Finally, we discuss use cases to illustrate access control requirements in our vision of cloud assisted connected cars and vehicular IoT, and discuss possible research directions.","PeriodicalId":423087,"journal":{"name":"Proceedings of the 23nd ACM on Symposium on Access Control Models and Technologies","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Authorization Framework for Secure Cloud Assisted Connected Cars and Vehicular Internet of Things\",\"authors\":\"Maanak Gupta, R. Sandhu\",\"doi\":\"10.1145/3205977.3205994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internet of Things has become a predominant phenomenon in every sphere of smart life. Connected Cars and Vehicular Internet of Things, which involves communication and data exchange between vehicles, traffic infrastructure or other entities are pivotal to realize the vision of smart city and intelligent transportation. Vehicular Cloud offers a promising architecture wherein storage and processing capabilities of smart objects are utilized to provide on-the-fly fog platform. Researchers have demonstrated vulnerabilities in this emerging vehicular IoT ecosystem, where data has been stolen from critical sensors and smart vehicles controlled remotely. Security and privacy is important in Internet of Vehicles (IoV) where access to electronic control units, applications and data in connected cars should only be authorized to legitimate users, sensors or vehicles. In this paper, we propose an authorization framework to secure this dynamic system where interactions among entities is not pre-defined. We provide an extended access control oriented (E-ACO) architecture relevant to IoV and discuss the need of vehicular clouds in this time and location sensitive environment. We outline approaches to different access control models which can be enforced at various layers of E-ACO architecture and in the authorization framework. Finally, we discuss use cases to illustrate access control requirements in our vision of cloud assisted connected cars and vehicular IoT, and discuss possible research directions.\",\"PeriodicalId\":423087,\"journal\":{\"name\":\"Proceedings of the 23nd ACM on Symposium on Access Control Models and Technologies\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23nd ACM on Symposium on Access Control Models and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3205977.3205994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23nd ACM on Symposium on Access Control Models and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3205977.3205994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Authorization Framework for Secure Cloud Assisted Connected Cars and Vehicular Internet of Things
Internet of Things has become a predominant phenomenon in every sphere of smart life. Connected Cars and Vehicular Internet of Things, which involves communication and data exchange between vehicles, traffic infrastructure or other entities are pivotal to realize the vision of smart city and intelligent transportation. Vehicular Cloud offers a promising architecture wherein storage and processing capabilities of smart objects are utilized to provide on-the-fly fog platform. Researchers have demonstrated vulnerabilities in this emerging vehicular IoT ecosystem, where data has been stolen from critical sensors and smart vehicles controlled remotely. Security and privacy is important in Internet of Vehicles (IoV) where access to electronic control units, applications and data in connected cars should only be authorized to legitimate users, sensors or vehicles. In this paper, we propose an authorization framework to secure this dynamic system where interactions among entities is not pre-defined. We provide an extended access control oriented (E-ACO) architecture relevant to IoV and discuss the need of vehicular clouds in this time and location sensitive environment. We outline approaches to different access control models which can be enforced at various layers of E-ACO architecture and in the authorization framework. Finally, we discuss use cases to illustrate access control requirements in our vision of cloud assisted connected cars and vehicular IoT, and discuss possible research directions.