用泰勒矩阵法求最一般的线性Fredholm积分-微分-差分方程的多项式解

Mehmet Sezer, Mustafa Gülsu
{"title":"用泰勒矩阵法求最一般的线性Fredholm积分-微分-差分方程的多项式解","authors":"Mehmet Sezer, Mustafa Gülsu","doi":"10.1080/02781070500128354","DOIUrl":null,"url":null,"abstract":"In this article, a Taylor matrix method is developed to find an approximate solution of the most general linear Fredholm integrodifferential–difference equations with variable coefficients under the mixed conditions in terms of Taylor polynomials. Also numerical examples are presented, which illustrate the pertinent features of the method. In some numerical examples, MAPLE modules are designed for the purpose of testing and using the method.","PeriodicalId":272508,"journal":{"name":"Complex Variables, Theory and Application: An International Journal","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Polynomial solution of the most general linear Fredholm integrodifferential–difference equations by means of Taylor matrix method\",\"authors\":\"Mehmet Sezer, Mustafa Gülsu\",\"doi\":\"10.1080/02781070500128354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a Taylor matrix method is developed to find an approximate solution of the most general linear Fredholm integrodifferential–difference equations with variable coefficients under the mixed conditions in terms of Taylor polynomials. Also numerical examples are presented, which illustrate the pertinent features of the method. In some numerical examples, MAPLE modules are designed for the purpose of testing and using the method.\",\"PeriodicalId\":272508,\"journal\":{\"name\":\"Complex Variables, Theory and Application: An International Journal\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Variables, Theory and Application: An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02781070500128354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Variables, Theory and Application: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02781070500128354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

本文提出了一种泰勒矩阵法,用泰勒多项式求混合条件下最一般的变系数线性Fredholm积分-微分-差分方程的近似解。最后给出了数值算例,说明了该方法的相关特点。在一些数值算例中,设计了MAPLE模块用于测试和使用该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomial solution of the most general linear Fredholm integrodifferential–difference equations by means of Taylor matrix method
In this article, a Taylor matrix method is developed to find an approximate solution of the most general linear Fredholm integrodifferential–difference equations with variable coefficients under the mixed conditions in terms of Taylor polynomials. Also numerical examples are presented, which illustrate the pertinent features of the method. In some numerical examples, MAPLE modules are designed for the purpose of testing and using the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信