{"title":"平南三桥建设创新技术","authors":"B. Tu, Jielian Zheng","doi":"10.2749/nanjing.2022.2055","DOIUrl":null,"url":null,"abstract":"The main bridge of the Pingnan Third Bridge is a half-through concrete-filled steel tubular (CFST) arch bridge with a world-largest effective span of 560 m. Due to the significant breakthrough in span and the adverse environmental features of construction site, many technological difficulties were encountered in construction of the Pingnan Third Bridge. Accordingly, systematic innovative technologies on design, construction, material and management of large-span CFST arch bridges were proposed, and fairly remarkable technological and economic benefits were achieved in this bridge. Meanwhile, considering the proposed technologies have solved several key general bottlenecks of extra-large arch bridges, especially CFST arch bridges, the technologies can also be good references for other similar bridges in the future.","PeriodicalId":410450,"journal":{"name":"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative Technologies for Construction of the Pingnan Third Bridge\",\"authors\":\"B. Tu, Jielian Zheng\",\"doi\":\"10.2749/nanjing.2022.2055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main bridge of the Pingnan Third Bridge is a half-through concrete-filled steel tubular (CFST) arch bridge with a world-largest effective span of 560 m. Due to the significant breakthrough in span and the adverse environmental features of construction site, many technological difficulties were encountered in construction of the Pingnan Third Bridge. Accordingly, systematic innovative technologies on design, construction, material and management of large-span CFST arch bridges were proposed, and fairly remarkable technological and economic benefits were achieved in this bridge. Meanwhile, considering the proposed technologies have solved several key general bottlenecks of extra-large arch bridges, especially CFST arch bridges, the technologies can also be good references for other similar bridges in the future.\",\"PeriodicalId\":410450,\"journal\":{\"name\":\"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2749/nanjing.2022.2055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2749/nanjing.2022.2055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Innovative Technologies for Construction of the Pingnan Third Bridge
The main bridge of the Pingnan Third Bridge is a half-through concrete-filled steel tubular (CFST) arch bridge with a world-largest effective span of 560 m. Due to the significant breakthrough in span and the adverse environmental features of construction site, many technological difficulties were encountered in construction of the Pingnan Third Bridge. Accordingly, systematic innovative technologies on design, construction, material and management of large-span CFST arch bridges were proposed, and fairly remarkable technological and economic benefits were achieved in this bridge. Meanwhile, considering the proposed technologies have solved several key general bottlenecks of extra-large arch bridges, especially CFST arch bridges, the technologies can also be good references for other similar bridges in the future.