推特交通:分析推特产生实时城市交通洞察和预测

Priyam Tejaswin, Rohan Kumar, Siddharth Gupta
{"title":"推特交通:分析推特产生实时城市交通洞察和预测","authors":"Priyam Tejaswin, Rohan Kumar, Siddharth Gupta","doi":"10.1145/2778865.2778874","DOIUrl":null,"url":null,"abstract":"Crowd sourced road traffic management is an open, unexplored problem in data science. With the growth of mobile communications and social media networks, more people are expressing their traffic situations in real-time. We explore how this social media data can be analyzed to generate valuable insights, useful for traffic management and city planning. Our method utilizes background knowledge from structured data repositories for entity extraction from tweets. We proceed to use this spatio-temporal data for traffic incident clustering and prediction. With accuracy and precision measurements providing encouraging results, we build on our methods and present our Continuous Traffic Management Dashboard (CTMD) system: an automated computer system for generating real-time, historic and predictive traffic insights.","PeriodicalId":116839,"journal":{"name":"Proceedings of the 2nd IKDD Conference on Data Sciences","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Tweeting Traffic: Analyzing Twitter for generating real-time city traffic insights and predictions\",\"authors\":\"Priyam Tejaswin, Rohan Kumar, Siddharth Gupta\",\"doi\":\"10.1145/2778865.2778874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crowd sourced road traffic management is an open, unexplored problem in data science. With the growth of mobile communications and social media networks, more people are expressing their traffic situations in real-time. We explore how this social media data can be analyzed to generate valuable insights, useful for traffic management and city planning. Our method utilizes background knowledge from structured data repositories for entity extraction from tweets. We proceed to use this spatio-temporal data for traffic incident clustering and prediction. With accuracy and precision measurements providing encouraging results, we build on our methods and present our Continuous Traffic Management Dashboard (CTMD) system: an automated computer system for generating real-time, historic and predictive traffic insights.\",\"PeriodicalId\":116839,\"journal\":{\"name\":\"Proceedings of the 2nd IKDD Conference on Data Sciences\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd IKDD Conference on Data Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2778865.2778874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd IKDD Conference on Data Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2778865.2778874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

在数据科学中,众包道路交通管理是一个开放的、尚未探索的问题。随着移动通信和社交媒体网络的发展,越来越多的人开始实时表达自己的交通状况。我们将探讨如何分析这些社交媒体数据,以产生对交通管理和城市规划有用的有价值的见解。我们的方法利用结构化数据存储库中的背景知识从tweet中提取实体。我们继续使用这些时空数据进行交通事件聚类和预测。由于测量的准确性和精度令人鼓舞,我们在方法的基础上提出了我们的连续交通管理仪表盘(CTMD)系统:一个自动计算机系统,用于生成实时、历史和预测的交通信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tweeting Traffic: Analyzing Twitter for generating real-time city traffic insights and predictions
Crowd sourced road traffic management is an open, unexplored problem in data science. With the growth of mobile communications and social media networks, more people are expressing their traffic situations in real-time. We explore how this social media data can be analyzed to generate valuable insights, useful for traffic management and city planning. Our method utilizes background knowledge from structured data repositories for entity extraction from tweets. We proceed to use this spatio-temporal data for traffic incident clustering and prediction. With accuracy and precision measurements providing encouraging results, we build on our methods and present our Continuous Traffic Management Dashboard (CTMD) system: an automated computer system for generating real-time, historic and predictive traffic insights.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信