小批量还是大批量?:有反弹的高斯步可以教

Peifeng Yin, Ping Luo, Taiga Nakamura
{"title":"小批量还是大批量?:有反弹的高斯步可以教","authors":"Peifeng Yin, Ping Luo, Taiga Nakamura","doi":"10.1145/3097983.3098147","DOIUrl":null,"url":null,"abstract":"Efficiency of large-scale learning is a hot topic in both academic and industry. The stochastic gradient descent (SGD) algorithm, and its extension mini-batch SGD, allow the model to be updated without scanning the whole data set. However, the use of approximate gradient leads to the uncertainty issue, slowing down the decreasing of objective function. Furthermore, such uncertainty may result in a high frequency of meaningless update on the model, causing a communication issue in parallel learning environment. In this work, we develop a batch-adaptive stochastic gradient descent (BA-SGD) algorithm, which can dynamically choose a proper batch size as learning proceeds. Particularly on the basis of Taylor extension and central limit theorem, it models the decrease of objective value as a Gaussian random walk game with rebound. In this game, a heuristic strategy of determining batch size is adopted to maximize the utility of each incremental sampling. By evaluation on multiple real data sets, we demonstrate that by smartly choosing the batch size, the BA-SGD not only conserves the fast convergence of SGD algorithm but also avoids too frequent model updates.","PeriodicalId":314049,"journal":{"name":"Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Small Batch or Large Batch?: Gaussian Walk with Rebound Can Teach\",\"authors\":\"Peifeng Yin, Ping Luo, Taiga Nakamura\",\"doi\":\"10.1145/3097983.3098147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficiency of large-scale learning is a hot topic in both academic and industry. The stochastic gradient descent (SGD) algorithm, and its extension mini-batch SGD, allow the model to be updated without scanning the whole data set. However, the use of approximate gradient leads to the uncertainty issue, slowing down the decreasing of objective function. Furthermore, such uncertainty may result in a high frequency of meaningless update on the model, causing a communication issue in parallel learning environment. In this work, we develop a batch-adaptive stochastic gradient descent (BA-SGD) algorithm, which can dynamically choose a proper batch size as learning proceeds. Particularly on the basis of Taylor extension and central limit theorem, it models the decrease of objective value as a Gaussian random walk game with rebound. In this game, a heuristic strategy of determining batch size is adopted to maximize the utility of each incremental sampling. By evaluation on multiple real data sets, we demonstrate that by smartly choosing the batch size, the BA-SGD not only conserves the fast convergence of SGD algorithm but also avoids too frequent model updates.\",\"PeriodicalId\":314049,\"journal\":{\"name\":\"Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3097983.3098147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3097983.3098147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

大规模学习的效率问题一直是学术界和业界关注的热点问题。随机梯度下降(SGD)算法及其扩展的小批量SGD算法允许在不扫描整个数据集的情况下更新模型。然而,近似梯度的使用导致了不确定性问题,减缓了目标函数的递减速度。此外,这种不确定性可能导致对模型进行高频率的无意义更新,从而导致并行学习环境中的通信问题。在这项工作中,我们开发了一种批量自适应随机梯度下降(BA-SGD)算法,该算法可以随着学习的进行动态选择合适的批量大小。特别在Taylor推广和中心极限定理的基础上,将目标值的减少建模为一个带反弹的高斯随机游走博弈。在这个博弈中,采用了一种确定批大小的启发式策略来最大化每次增量抽样的效用。通过对多个真实数据集的评估,我们证明了通过明智地选择批大小,BA-SGD算法既保持了SGD算法的快速收敛性,又避免了过于频繁的模型更新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Small Batch or Large Batch?: Gaussian Walk with Rebound Can Teach
Efficiency of large-scale learning is a hot topic in both academic and industry. The stochastic gradient descent (SGD) algorithm, and its extension mini-batch SGD, allow the model to be updated without scanning the whole data set. However, the use of approximate gradient leads to the uncertainty issue, slowing down the decreasing of objective function. Furthermore, such uncertainty may result in a high frequency of meaningless update on the model, causing a communication issue in parallel learning environment. In this work, we develop a batch-adaptive stochastic gradient descent (BA-SGD) algorithm, which can dynamically choose a proper batch size as learning proceeds. Particularly on the basis of Taylor extension and central limit theorem, it models the decrease of objective value as a Gaussian random walk game with rebound. In this game, a heuristic strategy of determining batch size is adopted to maximize the utility of each incremental sampling. By evaluation on multiple real data sets, we demonstrate that by smartly choosing the batch size, the BA-SGD not only conserves the fast convergence of SGD algorithm but also avoids too frequent model updates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信