多分辨率随机模型和多尺度估计算法

A. Willsky, K. C. Chou, A. Benveniste, M. Basseveille
{"title":"多分辨率随机模型和多尺度估计算法","authors":"A. Willsky, K. C. Chou, A. Benveniste, M. Basseveille","doi":"10.1109/MDSP.1989.97060","DOIUrl":null,"url":null,"abstract":"Summary form only given. It has been shown that wavelet transforms and multiscale representations lead naturally to the study of stochastic processes indexed by nodes on lattices and trees, where different depths in the tree or lattice correspond to different spatial scales or resolutions in representing the signal. This framework has been used to develop a theory of modeling for multiscale stochastic processes that leads to a highly nontrivial generalization of Levinson's algorithm involving recursive generation of models of increasing order, in which the direction of recursion is from coarse to fine resolutions. A theory of optimal estimation for multiresolution stochastic models has been developed. These models lead naturally to several algorithmic structures, one reminiscent of the Laplacian pyramid, one that can be viewed as a multigrid relaxation algorithm, and one that is a generalization of the Rauch-Tung-Striebel algorithm for optimal smoothing of state space models.<<ETX>>","PeriodicalId":340681,"journal":{"name":"Sixth Multidimensional Signal Processing Workshop,","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiresolution stochastic models and multiscale estimation algorithms\",\"authors\":\"A. Willsky, K. C. Chou, A. Benveniste, M. Basseveille\",\"doi\":\"10.1109/MDSP.1989.97060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. It has been shown that wavelet transforms and multiscale representations lead naturally to the study of stochastic processes indexed by nodes on lattices and trees, where different depths in the tree or lattice correspond to different spatial scales or resolutions in representing the signal. This framework has been used to develop a theory of modeling for multiscale stochastic processes that leads to a highly nontrivial generalization of Levinson's algorithm involving recursive generation of models of increasing order, in which the direction of recursion is from coarse to fine resolutions. A theory of optimal estimation for multiresolution stochastic models has been developed. These models lead naturally to several algorithmic structures, one reminiscent of the Laplacian pyramid, one that can be viewed as a multigrid relaxation algorithm, and one that is a generalization of the Rauch-Tung-Striebel algorithm for optimal smoothing of state space models.<<ETX>>\",\"PeriodicalId\":340681,\"journal\":{\"name\":\"Sixth Multidimensional Signal Processing Workshop,\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth Multidimensional Signal Processing Workshop,\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MDSP.1989.97060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth Multidimensional Signal Processing Workshop,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDSP.1989.97060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

只提供摘要形式。研究表明,小波变换和多尺度表示自然导致了对随机过程的研究,这些随机过程是由网格和树上的节点索引的,其中树或晶格中的不同深度对应于表示信号的不同空间尺度或分辨率。该框架已被用于发展多尺度随机过程的建模理论,该理论导致Levinson算法的高度非平凡推广,涉及增加顺序模型的递归生成,其中递归方向是从粗到细分辨率。提出了一种多分辨率随机模型的最优估计理论。这些模型自然导致几种算法结构,一种让人想起拉普拉斯金字塔,一种可以被视为多网格松弛算法,另一种是用于状态空间模型最优平滑的Rauch-Tung-Striebel算法的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiresolution stochastic models and multiscale estimation algorithms
Summary form only given. It has been shown that wavelet transforms and multiscale representations lead naturally to the study of stochastic processes indexed by nodes on lattices and trees, where different depths in the tree or lattice correspond to different spatial scales or resolutions in representing the signal. This framework has been used to develop a theory of modeling for multiscale stochastic processes that leads to a highly nontrivial generalization of Levinson's algorithm involving recursive generation of models of increasing order, in which the direction of recursion is from coarse to fine resolutions. A theory of optimal estimation for multiresolution stochastic models has been developed. These models lead naturally to several algorithmic structures, one reminiscent of the Laplacian pyramid, one that can be viewed as a multigrid relaxation algorithm, and one that is a generalization of the Rauch-Tung-Striebel algorithm for optimal smoothing of state space models.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信