文档数据库中的聚类和时间趋势识别

Alexandrin Popescul, G. Flake, S. Lawrence, L. Ungar, C. Lee Giles
{"title":"文档数据库中的聚类和时间趋势识别","authors":"Alexandrin Popescul, G. Flake, S. Lawrence, L. Ungar, C. Lee Giles","doi":"10.1109/ADL.2000.848380","DOIUrl":null,"url":null,"abstract":"We introduce a simple and efficient method for clustering and identifying temporal trends in hyper-linked document databases. Our method can scale to large datasets because it exploits the underlying regularity often found in hyper-linked document databases. Because of this scalability, we can use our method to study the temporal trends of individual clusters in a statistically meaningful manner. As an example of our approach, we give a summary of the temporal trends found in a scientific literature database with thousands of documents.","PeriodicalId":426762,"journal":{"name":"Proceedings IEEE Advances in Digital Libraries 2000","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"112","resultStr":"{\"title\":\"Clustering and identifying temporal trends in document databases\",\"authors\":\"Alexandrin Popescul, G. Flake, S. Lawrence, L. Ungar, C. Lee Giles\",\"doi\":\"10.1109/ADL.2000.848380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a simple and efficient method for clustering and identifying temporal trends in hyper-linked document databases. Our method can scale to large datasets because it exploits the underlying regularity often found in hyper-linked document databases. Because of this scalability, we can use our method to study the temporal trends of individual clusters in a statistically meaningful manner. As an example of our approach, we give a summary of the temporal trends found in a scientific literature database with thousands of documents.\",\"PeriodicalId\":426762,\"journal\":{\"name\":\"Proceedings IEEE Advances in Digital Libraries 2000\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"112\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE Advances in Digital Libraries 2000\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ADL.2000.848380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Advances in Digital Libraries 2000","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ADL.2000.848380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 112

摘要

我们介绍了一种简单有效的方法来聚类和识别超链接文档数据库中的时间趋势。我们的方法可以扩展到大型数据集,因为它利用了在超链接文档数据库中经常发现的潜在规律性。由于这种可伸缩性,我们可以使用我们的方法以统计上有意义的方式研究单个集群的时间趋势。作为我们方法的一个例子,我们给出了在一个包含数千篇文献的科学文献数据库中发现的时间趋势的摘要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering and identifying temporal trends in document databases
We introduce a simple and efficient method for clustering and identifying temporal trends in hyper-linked document databases. Our method can scale to large datasets because it exploits the underlying regularity often found in hyper-linked document databases. Because of this scalability, we can use our method to study the temporal trends of individual clusters in a statistically meaningful manner. As an example of our approach, we give a summary of the temporal trends found in a scientific literature database with thousands of documents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信