{"title":"相空间动力学和遍历性","authors":"J. Sethna","doi":"10.1093/oso/9780198865247.003.0004","DOIUrl":null,"url":null,"abstract":"This chapter provides the mathematical justification for the theory of equilibrium statistical mechanics. A Hamiltonian system which is ergodic is shown to have time-average behavior equal to the average behavior in the energy shell. Liouville’s theorem is used to justify the use of phase-space volume in taking this average. Exercises explore the breakdown of ergodicity in planetary motion and in dissipative systems, the application of Liouville’s theorem by Crooks and Jarzynski to non-equilibrium statistical mechanics, and generalizations of statistical mechanics to chaotic systems and to two-dimensional turbulence and Jupiter’s great red spot.","PeriodicalId":218123,"journal":{"name":"Statistical Mechanics: Entropy, Order Parameters, and Complexity","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase-space dynamics and ergodicity\",\"authors\":\"J. Sethna\",\"doi\":\"10.1093/oso/9780198865247.003.0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter provides the mathematical justification for the theory of equilibrium statistical mechanics. A Hamiltonian system which is ergodic is shown to have time-average behavior equal to the average behavior in the energy shell. Liouville’s theorem is used to justify the use of phase-space volume in taking this average. Exercises explore the breakdown of ergodicity in planetary motion and in dissipative systems, the application of Liouville’s theorem by Crooks and Jarzynski to non-equilibrium statistical mechanics, and generalizations of statistical mechanics to chaotic systems and to two-dimensional turbulence and Jupiter’s great red spot.\",\"PeriodicalId\":218123,\"journal\":{\"name\":\"Statistical Mechanics: Entropy, Order Parameters, and Complexity\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Mechanics: Entropy, Order Parameters, and Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198865247.003.0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Mechanics: Entropy, Order Parameters, and Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198865247.003.0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This chapter provides the mathematical justification for the theory of equilibrium statistical mechanics. A Hamiltonian system which is ergodic is shown to have time-average behavior equal to the average behavior in the energy shell. Liouville’s theorem is used to justify the use of phase-space volume in taking this average. Exercises explore the breakdown of ergodicity in planetary motion and in dissipative systems, the application of Liouville’s theorem by Crooks and Jarzynski to non-equilibrium statistical mechanics, and generalizations of statistical mechanics to chaotic systems and to two-dimensional turbulence and Jupiter’s great red spot.