大数据中的知识挖掘——代数几何的一个教训

Jun Xie, Zehua Chen, Gang Xie, T. Lin
{"title":"大数据中的知识挖掘——代数几何的一个教训","authors":"Jun Xie, Zehua Chen, Gang Xie, T. Lin","doi":"10.1109/GrC.2013.6740437","DOIUrl":null,"url":null,"abstract":"A granular computing (GrC) approach of a mathematical framework for “knowledge mining in Big Data” is illustrated by using some idea from algebraic geometry: (1) For example, the ring of the integers, denoted by Z, is a model U of `Big Data' (the discourse of universe of `Big Data'). (2) The selection of the set of prime ideals is an example of granulating (MAPping) the “Big Data” U into granular structure. (3) To compute the hidden geometric structure of Spec(Z) (e.g., Zariski topology) is to compute (to REDUCE) the quotient structure and and to interpret into knowledge structure. The transformation of algebraic structure of Z to geometric structure of Spec(Z) is the GrC framework of “knowledge mining in Big Data”.","PeriodicalId":415445,"journal":{"name":"2013 IEEE International Conference on Granular Computing (GrC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Knowledge mining in big data — A lesson from algebraic geometry\",\"authors\":\"Jun Xie, Zehua Chen, Gang Xie, T. Lin\",\"doi\":\"10.1109/GrC.2013.6740437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A granular computing (GrC) approach of a mathematical framework for “knowledge mining in Big Data” is illustrated by using some idea from algebraic geometry: (1) For example, the ring of the integers, denoted by Z, is a model U of `Big Data' (the discourse of universe of `Big Data'). (2) The selection of the set of prime ideals is an example of granulating (MAPping) the “Big Data” U into granular structure. (3) To compute the hidden geometric structure of Spec(Z) (e.g., Zariski topology) is to compute (to REDUCE) the quotient structure and and to interpret into knowledge structure. The transformation of algebraic structure of Z to geometric structure of Spec(Z) is the GrC framework of “knowledge mining in Big Data”.\",\"PeriodicalId\":415445,\"journal\":{\"name\":\"2013 IEEE International Conference on Granular Computing (GrC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Granular Computing (GrC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GrC.2013.6740437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Granular Computing (GrC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GrC.2013.6740437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

“大数据中的知识挖掘”的数学框架的颗粒计算(GrC)方法通过使用代数几何的一些思想来说明:(1)例如,用Z表示的整数环是“大数据”(“大数据”宇宙的话语)的模型U。(2)素数理想集的选择是将“大数据”U颗粒化(映射)成颗粒结构的一个例子。(3)计算Spec(Z)的隐藏几何结构(如Zariski拓扑),即计算(约简)其商结构,并将其解释为知识结构。将Z的代数结构转化为Spec(Z)的几何结构就是“大数据中的知识挖掘”的GrC框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knowledge mining in big data — A lesson from algebraic geometry
A granular computing (GrC) approach of a mathematical framework for “knowledge mining in Big Data” is illustrated by using some idea from algebraic geometry: (1) For example, the ring of the integers, denoted by Z, is a model U of `Big Data' (the discourse of universe of `Big Data'). (2) The selection of the set of prime ideals is an example of granulating (MAPping) the “Big Data” U into granular structure. (3) To compute the hidden geometric structure of Spec(Z) (e.g., Zariski topology) is to compute (to REDUCE) the quotient structure and and to interpret into knowledge structure. The transformation of algebraic structure of Z to geometric structure of Spec(Z) is the GrC framework of “knowledge mining in Big Data”.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信