A. C. Fabregas, Patrick Arellano, Andrea Nicole D. Pinili
{"title":"基于时间序列和时空方法的长短期记忆网络在菲律宾地震预报中的应用","authors":"A. C. Fabregas, Patrick Arellano, Andrea Nicole D. Pinili","doi":"10.1145/3443279.3443288","DOIUrl":null,"url":null,"abstract":"A series of large earthquakes has been observed in different places in the Philippines in the year of 2019. These earthquake events led to destruction of infrastructures, households, heritage sites, and even multiple number of human lives. Earthquakes are hard to predict or forecast, which is why it is considered as a big challenge in the field of seismology. In this work, Rule Based Algorithm was used to classify the regions based on the latitude and longitude values, while Long Short-Term Memory (LSTM) Networks was used to forecast the following variables: frequency, maximum magnitude, and average depth of earthquake events in a specific region in a given year. The developed system was able to produce satisfactory results in the classification of regions, as well as in forecasting the maximum magnitude of earthquake events. The obtained results showed an improved prediction for the maximum magnitude, by considering both time series and spatiotemporal analysis, compared to previous prediction studies.","PeriodicalId":414366,"journal":{"name":"Proceedings of the 4th International Conference on Natural Language Processing and Information Retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Long-Short Term Memory (LSTM) Networks with Time Series and Spatio-Temporal Approaches Applied in Forecasting Earthquakes in the Philippines\",\"authors\":\"A. C. Fabregas, Patrick Arellano, Andrea Nicole D. Pinili\",\"doi\":\"10.1145/3443279.3443288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A series of large earthquakes has been observed in different places in the Philippines in the year of 2019. These earthquake events led to destruction of infrastructures, households, heritage sites, and even multiple number of human lives. Earthquakes are hard to predict or forecast, which is why it is considered as a big challenge in the field of seismology. In this work, Rule Based Algorithm was used to classify the regions based on the latitude and longitude values, while Long Short-Term Memory (LSTM) Networks was used to forecast the following variables: frequency, maximum magnitude, and average depth of earthquake events in a specific region in a given year. The developed system was able to produce satisfactory results in the classification of regions, as well as in forecasting the maximum magnitude of earthquake events. The obtained results showed an improved prediction for the maximum magnitude, by considering both time series and spatiotemporal analysis, compared to previous prediction studies.\",\"PeriodicalId\":414366,\"journal\":{\"name\":\"Proceedings of the 4th International Conference on Natural Language Processing and Information Retrieval\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th International Conference on Natural Language Processing and Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3443279.3443288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Natural Language Processing and Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3443279.3443288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Long-Short Term Memory (LSTM) Networks with Time Series and Spatio-Temporal Approaches Applied in Forecasting Earthquakes in the Philippines
A series of large earthquakes has been observed in different places in the Philippines in the year of 2019. These earthquake events led to destruction of infrastructures, households, heritage sites, and even multiple number of human lives. Earthquakes are hard to predict or forecast, which is why it is considered as a big challenge in the field of seismology. In this work, Rule Based Algorithm was used to classify the regions based on the latitude and longitude values, while Long Short-Term Memory (LSTM) Networks was used to forecast the following variables: frequency, maximum magnitude, and average depth of earthquake events in a specific region in a given year. The developed system was able to produce satisfactory results in the classification of regions, as well as in forecasting the maximum magnitude of earthquake events. The obtained results showed an improved prediction for the maximum magnitude, by considering both time series and spatiotemporal analysis, compared to previous prediction studies.