视网膜病变检测中特征对训练数据不准确的敏感性评价

L. Laaksonen, A. Hannuksela, E. Claridge, P. Fält, M. Hauta-Kasari, H. Uusitalo, L. Lensu
{"title":"视网膜病变检测中特征对训练数据不准确的敏感性评价","authors":"L. Laaksonen, A. Hannuksela, E. Claridge, P. Fält, M. Hauta-Kasari, H. Uusitalo, L. Lensu","doi":"10.1109/IPTA.2016.7820975","DOIUrl":null,"url":null,"abstract":"Computer aided diagnostic and segmentation tools have become increasingly important in reducing the workload of medical experts performing diagnosis, monitoring and documentation of various eye diseases such as age-related macular degeneration (AMD), diabetic retinopathy (DR) and glaucoma. Supervised methods have been developed for the segmentation and detection of lesions, and the reported performance has been good. The supervised methods, however, need representative data to properly train the classifier. Inaccuracies in the ground truth may have a significant impact on the performance of a supervised method as the training data are not representative. In this study, a quantitative evaluation of the sensitivity of different image features, including colour, texture, edge and higher-level features, to inaccuracy in the ground truth on exudates is presented. A mean decrease of approx. 20% in sensitivity and 13% in specificity was observed when using the most inaccurate training data.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluation of feature sensitivity to training data inaccuracy in detection of retinal lesions\",\"authors\":\"L. Laaksonen, A. Hannuksela, E. Claridge, P. Fält, M. Hauta-Kasari, H. Uusitalo, L. Lensu\",\"doi\":\"10.1109/IPTA.2016.7820975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer aided diagnostic and segmentation tools have become increasingly important in reducing the workload of medical experts performing diagnosis, monitoring and documentation of various eye diseases such as age-related macular degeneration (AMD), diabetic retinopathy (DR) and glaucoma. Supervised methods have been developed for the segmentation and detection of lesions, and the reported performance has been good. The supervised methods, however, need representative data to properly train the classifier. Inaccuracies in the ground truth may have a significant impact on the performance of a supervised method as the training data are not representative. In this study, a quantitative evaluation of the sensitivity of different image features, including colour, texture, edge and higher-level features, to inaccuracy in the ground truth on exudates is presented. A mean decrease of approx. 20% in sensitivity and 13% in specificity was observed when using the most inaccurate training data.\",\"PeriodicalId\":123429,\"journal\":{\"name\":\"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2016.7820975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7820975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

计算机辅助诊断和分割工具在减少医学专家对各种眼病(如年龄相关性黄斑变性(AMD)、糖尿病性视网膜病变(DR)和青光眼)进行诊断、监测和记录的工作量方面变得越来越重要。有监督的方法已经被开发用于病灶的分割和检测,并且报道的性能很好。然而,监督方法需要有代表性的数据来正确训练分类器。由于训练数据不具有代表性,地面真值的不准确性可能会对监督方法的性能产生重大影响。在本研究中,对不同图像特征(包括颜色、纹理、边缘和高级特征)对渗出物地面真实度不准确的敏感性进行了定量评估。平均减少约。当使用最不准确的训练数据时,灵敏度为20%,特异性为13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of feature sensitivity to training data inaccuracy in detection of retinal lesions
Computer aided diagnostic and segmentation tools have become increasingly important in reducing the workload of medical experts performing diagnosis, monitoring and documentation of various eye diseases such as age-related macular degeneration (AMD), diabetic retinopathy (DR) and glaucoma. Supervised methods have been developed for the segmentation and detection of lesions, and the reported performance has been good. The supervised methods, however, need representative data to properly train the classifier. Inaccuracies in the ground truth may have a significant impact on the performance of a supervised method as the training data are not representative. In this study, a quantitative evaluation of the sensitivity of different image features, including colour, texture, edge and higher-level features, to inaccuracy in the ground truth on exudates is presented. A mean decrease of approx. 20% in sensitivity and 13% in specificity was observed when using the most inaccurate training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信