短期电力需求预测的广义回归神经网络集成

Grzegorz Dudek
{"title":"短期电力需求预测的广义回归神经网络集成","authors":"Grzegorz Dudek","doi":"10.1109/EPE.2017.7967256","DOIUrl":null,"url":null,"abstract":"This work presents ensembles of general regression neural network for short-term electricity demand forecasting. Several types of ensembles are proposed which differ in the source of diversity of individual members. Diversity is generated using different subsets of training data, different subsets of features, randomly disrupted training data and randomly disrupted model parameters. Experimental study on several datasets demonstrates that ensemble learning leads to decreasing in forecast errors comparing to the mean errors of the base learners.","PeriodicalId":201464,"journal":{"name":"2017 18th International Scientific Conference on Electric Power Engineering (EPE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Ensembles of general regression neural networks for short-term electricity demand forecasting\",\"authors\":\"Grzegorz Dudek\",\"doi\":\"10.1109/EPE.2017.7967256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents ensembles of general regression neural network for short-term electricity demand forecasting. Several types of ensembles are proposed which differ in the source of diversity of individual members. Diversity is generated using different subsets of training data, different subsets of features, randomly disrupted training data and randomly disrupted model parameters. Experimental study on several datasets demonstrates that ensemble learning leads to decreasing in forecast errors comparing to the mean errors of the base learners.\",\"PeriodicalId\":201464,\"journal\":{\"name\":\"2017 18th International Scientific Conference on Electric Power Engineering (EPE)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 18th International Scientific Conference on Electric Power Engineering (EPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPE.2017.7967256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Scientific Conference on Electric Power Engineering (EPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPE.2017.7967256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了用于短期电力需求预测的广义回归神经网络组合。提出了几种类型的合奏,这些合奏在个体成员多样性的来源上有所不同。多样性是由训练数据的不同子集、特征的不同子集、随机中断的训练数据和随机中断的模型参数产生的。在多个数据集上的实验研究表明,与基础学习器的平均误差相比,集成学习使预测误差减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ensembles of general regression neural networks for short-term electricity demand forecasting
This work presents ensembles of general regression neural network for short-term electricity demand forecasting. Several types of ensembles are proposed which differ in the source of diversity of individual members. Diversity is generated using different subsets of training data, different subsets of features, randomly disrupted training data and randomly disrupted model parameters. Experimental study on several datasets demonstrates that ensemble learning leads to decreasing in forecast errors comparing to the mean errors of the base learners.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信