一种用于组合逻辑电路设计与优化的编码技术

D. Bhadra, T. A. Tarique, S. U. Ahmed, M. Shahjahan, K. Murase
{"title":"一种用于组合逻辑电路设计与优化的编码技术","authors":"D. Bhadra, T. A. Tarique, S. U. Ahmed, M. Shahjahan, K. Murase","doi":"10.1109/ICCITECHN.2010.5723860","DOIUrl":null,"url":null,"abstract":"A neural representation of combinational logic circuit is proposed, called ‘Logical Neural Network’ (LNN). LNN is a feed-forward neural network (NN) where the weights of the network indicate the connections of digital circuit. The logic operations of the circuit such as AND, OR, NOR etc are performed with the neurons of LNN. A modification of Simple Genetic Algorithm (mSGA) is applied to design and optimize the LNN for a given truth table. The proposed technique is experimentally studied on four bit parity checker, two bit multiplexer, two bit full adder, full subtractor, and two bit multiplier circuits. LNN is compared with conventional ‘Cell Array’ method. LNN outperforms the Cell Array method in terms of number of required gates.","PeriodicalId":149135,"journal":{"name":"2010 13th International Conference on Computer and Information Technology (ICCIT)","volume":"2419 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An encoding technique for design and optimization of combinational logic circuit\",\"authors\":\"D. Bhadra, T. A. Tarique, S. U. Ahmed, M. Shahjahan, K. Murase\",\"doi\":\"10.1109/ICCITECHN.2010.5723860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A neural representation of combinational logic circuit is proposed, called ‘Logical Neural Network’ (LNN). LNN is a feed-forward neural network (NN) where the weights of the network indicate the connections of digital circuit. The logic operations of the circuit such as AND, OR, NOR etc are performed with the neurons of LNN. A modification of Simple Genetic Algorithm (mSGA) is applied to design and optimize the LNN for a given truth table. The proposed technique is experimentally studied on four bit parity checker, two bit multiplexer, two bit full adder, full subtractor, and two bit multiplier circuits. LNN is compared with conventional ‘Cell Array’ method. LNN outperforms the Cell Array method in terms of number of required gates.\",\"PeriodicalId\":149135,\"journal\":{\"name\":\"2010 13th International Conference on Computer and Information Technology (ICCIT)\",\"volume\":\"2419 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 13th International Conference on Computer and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITECHN.2010.5723860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2010.5723860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种组合逻辑电路的神经表示,称为“逻辑神经网络”(LNN)。LNN是一种前馈神经网络,网络的权值表示数字电路的连接。电路的与、或、非或等逻辑运算是通过LNN的神经元来完成的。采用一种改进的简单遗传算法(mSGA)对给定真值表设计和优化LNN。该技术在四位奇偶校验器、两位多路复用器、两位全加法器、全减法器和两位乘法器电路上进行了实验研究。将LNN与传统的“单元阵列”方法进行了比较。LNN在所需门的数量方面优于单元阵列方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An encoding technique for design and optimization of combinational logic circuit
A neural representation of combinational logic circuit is proposed, called ‘Logical Neural Network’ (LNN). LNN is a feed-forward neural network (NN) where the weights of the network indicate the connections of digital circuit. The logic operations of the circuit such as AND, OR, NOR etc are performed with the neurons of LNN. A modification of Simple Genetic Algorithm (mSGA) is applied to design and optimize the LNN for a given truth table. The proposed technique is experimentally studied on four bit parity checker, two bit multiplexer, two bit full adder, full subtractor, and two bit multiplier circuits. LNN is compared with conventional ‘Cell Array’ method. LNN outperforms the Cell Array method in terms of number of required gates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信