{"title":"视频编解码器应用SIMD扩展中未对齐内存操作对性能的影响","authors":"M. Alvarez, E. Salamí, Alex Ramírez, M. Valero","doi":"10.1109/ISPASS.2007.363737","DOIUrl":null,"url":null,"abstract":"Although SIMD extensions are a cost effective way to exploit the data level parallelism present in most media applications, we will show that they had have a very limited memory architecture with a weak support for unaligned memory accesses. In video codec, and other applications, the overhead for accessing unaligned positions without an efficient architecture support has a big performance penalty and in some cases makes vectorization counter-productive. In this paper we analyze the performance impact of extending the Altivec SIMD ISA with unaligned memory operations. Results show that for several kernels in the H.264/AVC media codec, unaligned access support provides a speedup up to 3.8times compared to the plain SIMD version, translating into an average of 1.2times in the entire application. In addition to providing a significant performance advantage, the use of unaligned memory instructions makes programming SIMD code much easier both for the manual developer and the auto vectorizing compiler","PeriodicalId":439151,"journal":{"name":"2007 IEEE International Symposium on Performance Analysis of Systems & Software","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Performance Impact of Unaligned Memory Operations in SIMD Extensions for Video Codec Applications\",\"authors\":\"M. Alvarez, E. Salamí, Alex Ramírez, M. Valero\",\"doi\":\"10.1109/ISPASS.2007.363737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although SIMD extensions are a cost effective way to exploit the data level parallelism present in most media applications, we will show that they had have a very limited memory architecture with a weak support for unaligned memory accesses. In video codec, and other applications, the overhead for accessing unaligned positions without an efficient architecture support has a big performance penalty and in some cases makes vectorization counter-productive. In this paper we analyze the performance impact of extending the Altivec SIMD ISA with unaligned memory operations. Results show that for several kernels in the H.264/AVC media codec, unaligned access support provides a speedup up to 3.8times compared to the plain SIMD version, translating into an average of 1.2times in the entire application. In addition to providing a significant performance advantage, the use of unaligned memory instructions makes programming SIMD code much easier both for the manual developer and the auto vectorizing compiler\",\"PeriodicalId\":439151,\"journal\":{\"name\":\"2007 IEEE International Symposium on Performance Analysis of Systems & Software\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Performance Analysis of Systems & Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPASS.2007.363737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Performance Analysis of Systems & Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPASS.2007.363737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance Impact of Unaligned Memory Operations in SIMD Extensions for Video Codec Applications
Although SIMD extensions are a cost effective way to exploit the data level parallelism present in most media applications, we will show that they had have a very limited memory architecture with a weak support for unaligned memory accesses. In video codec, and other applications, the overhead for accessing unaligned positions without an efficient architecture support has a big performance penalty and in some cases makes vectorization counter-productive. In this paper we analyze the performance impact of extending the Altivec SIMD ISA with unaligned memory operations. Results show that for several kernels in the H.264/AVC media codec, unaligned access support provides a speedup up to 3.8times compared to the plain SIMD version, translating into an average of 1.2times in the entire application. In addition to providing a significant performance advantage, the use of unaligned memory instructions makes programming SIMD code much easier both for the manual developer and the auto vectorizing compiler