{"title":"图像-文本检索的迭代单模态和跨模态聚类对比学习","authors":"Yi Zhu, Xiu Li","doi":"10.1109/prmvia58252.2023.00009","DOIUrl":null,"url":null,"abstract":"Multimedia data has exploded both in quantity and form. Under such background, cross-modal retrieval has become a research hot spot in recent years. We address the image-to-text and text-to-image retrieval problems by proposing a symmetric two-stream pre-training framework. In this work, the architecture is based on the CLIP model and it consists of a BERT-pretrained text encoder and a Vision Transformer (ViT)-pretrained image encoder. We utilize not only a cross-modal contrastive loss, but also two symmetric uni-modal contrast losses to train the model in an unsupervised manner. In addition, we propose novel training strategies, including the multi-stage training scheme and iterative training strategy with clustered hard negative data. Experimental results show that our model achieves better performance via introducing the uni-modal self-supervised branch and losses compared to the sole CLIP model.","PeriodicalId":221346,"journal":{"name":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iterative Uni-modal and Cross-modal Clustered Contrastive Learning for Image-text Retrieval\",\"authors\":\"Yi Zhu, Xiu Li\",\"doi\":\"10.1109/prmvia58252.2023.00009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multimedia data has exploded both in quantity and form. Under such background, cross-modal retrieval has become a research hot spot in recent years. We address the image-to-text and text-to-image retrieval problems by proposing a symmetric two-stream pre-training framework. In this work, the architecture is based on the CLIP model and it consists of a BERT-pretrained text encoder and a Vision Transformer (ViT)-pretrained image encoder. We utilize not only a cross-modal contrastive loss, but also two symmetric uni-modal contrast losses to train the model in an unsupervised manner. In addition, we propose novel training strategies, including the multi-stage training scheme and iterative training strategy with clustered hard negative data. Experimental results show that our model achieves better performance via introducing the uni-modal self-supervised branch and losses compared to the sole CLIP model.\",\"PeriodicalId\":221346,\"journal\":{\"name\":\"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/prmvia58252.2023.00009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/prmvia58252.2023.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Iterative Uni-modal and Cross-modal Clustered Contrastive Learning for Image-text Retrieval
Multimedia data has exploded both in quantity and form. Under such background, cross-modal retrieval has become a research hot spot in recent years. We address the image-to-text and text-to-image retrieval problems by proposing a symmetric two-stream pre-training framework. In this work, the architecture is based on the CLIP model and it consists of a BERT-pretrained text encoder and a Vision Transformer (ViT)-pretrained image encoder. We utilize not only a cross-modal contrastive loss, but also two symmetric uni-modal contrast losses to train the model in an unsupervised manner. In addition, we propose novel training strategies, including the multi-stage training scheme and iterative training strategy with clustered hard negative data. Experimental results show that our model achieves better performance via introducing the uni-modal self-supervised branch and losses compared to the sole CLIP model.