黎曼Anosov扩展及其应用

Dong Chen, A. Erchenko, A. Gogolev
{"title":"黎曼Anosov扩展及其应用","authors":"Dong Chen, A. Erchenko, A. Gogolev","doi":"10.5802/jep.237","DOIUrl":null,"url":null,"abstract":"Let $\\Sigma$ be a Riemannian manifold with strictly convex spherical boundary. Assuming absence of conjugate points and that the trapped set is hyperbolic, we show that $\\Sigma$ can be isometrically embedded into a closed Riemannian manifold with Anosov geodesic flow. We use this embedding to provide a direct link between the classical Livshits theorem for Anosov flows and the Livshits theorem for the X-ray transform which appears in the boundary rigidity program. Also, we give an application for lens rigidity in a conformal class.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Riemannian Anosov extension and applications\",\"authors\":\"Dong Chen, A. Erchenko, A. Gogolev\",\"doi\":\"10.5802/jep.237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\Sigma$ be a Riemannian manifold with strictly convex spherical boundary. Assuming absence of conjugate points and that the trapped set is hyperbolic, we show that $\\\\Sigma$ can be isometrically embedded into a closed Riemannian manifold with Anosov geodesic flow. We use this embedding to provide a direct link between the classical Livshits theorem for Anosov flows and the Livshits theorem for the X-ray transform which appears in the boundary rigidity program. Also, we give an application for lens rigidity in a conformal class.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

设$\ σ $为具有严格凸球面边界的黎曼流形。假设无共轭点且捕获集是双曲的,我们证明了$\Sigma$可以等距嵌入到具有Anosov测地流的封闭黎曼流形中。我们使用这种嵌入在经典的用于Anosov流的Livshits定理和用于出现在边界刚性程序中的x射线变换的Livshits定理之间提供了直接的联系。同时给出了透镜刚性在保形类中的一个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Riemannian Anosov extension and applications
Let $\Sigma$ be a Riemannian manifold with strictly convex spherical boundary. Assuming absence of conjugate points and that the trapped set is hyperbolic, we show that $\Sigma$ can be isometrically embedded into a closed Riemannian manifold with Anosov geodesic flow. We use this embedding to provide a direct link between the classical Livshits theorem for Anosov flows and the Livshits theorem for the X-ray transform which appears in the boundary rigidity program. Also, we give an application for lens rigidity in a conformal class.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信