模糊c均值聚类的聚类有效性指标

Yating Hu, C. Zuo, Yang Yang, Fuheng Qu
{"title":"模糊c均值聚类的聚类有效性指标","authors":"Yating Hu, C. Zuo, Yang Yang, Fuheng Qu","doi":"10.1109/ICSSEM.2011.6081293","DOIUrl":null,"url":null,"abstract":"This paper presents a new validity index for validation of the fuzzy partitions generated by the fuzzy c-means algorithm. The proposed validity index is based on the compactness and separation measure. The compactness measure is defined as the weighted square deviation of the intra cluster, and the separation measure is defined as the distance for the different fuzzy sets. There are high expectations of a large degree compactness and separation among clusters for a good fuzzy partition. The contrast experimental results with various indices show that the proposed index is more robust to the noise and can identify clusters with different densities and sizes.","PeriodicalId":406311,"journal":{"name":"2011 International Conference on System science, Engineering design and Manufacturing informatization","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A cluster validity index for fuzzy c-means clustering\",\"authors\":\"Yating Hu, C. Zuo, Yang Yang, Fuheng Qu\",\"doi\":\"10.1109/ICSSEM.2011.6081293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new validity index for validation of the fuzzy partitions generated by the fuzzy c-means algorithm. The proposed validity index is based on the compactness and separation measure. The compactness measure is defined as the weighted square deviation of the intra cluster, and the separation measure is defined as the distance for the different fuzzy sets. There are high expectations of a large degree compactness and separation among clusters for a good fuzzy partition. The contrast experimental results with various indices show that the proposed index is more robust to the noise and can identify clusters with different densities and sizes.\",\"PeriodicalId\":406311,\"journal\":{\"name\":\"2011 International Conference on System science, Engineering design and Manufacturing informatization\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on System science, Engineering design and Manufacturing informatization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSEM.2011.6081293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on System science, Engineering design and Manufacturing informatization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSEM.2011.6081293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种新的有效性指标,用于模糊c均值算法生成的模糊分区的有效性验证。提出的有效性指标是基于紧凑性和分离性度量。紧度度量定义为簇内加权方差,分离度量定义为不同模糊集之间的距离。对于一个好的模糊划分,聚类之间有很高的紧密度和分离度。实验结果表明,该指标对噪声具有较强的鲁棒性,能够识别不同密度和大小的聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A cluster validity index for fuzzy c-means clustering
This paper presents a new validity index for validation of the fuzzy partitions generated by the fuzzy c-means algorithm. The proposed validity index is based on the compactness and separation measure. The compactness measure is defined as the weighted square deviation of the intra cluster, and the separation measure is defined as the distance for the different fuzzy sets. There are high expectations of a large degree compactness and separation among clusters for a good fuzzy partition. The contrast experimental results with various indices show that the proposed index is more robust to the noise and can identify clusters with different densities and sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信