基于显著对手运动特征的人类动作识别

A. Shabani, J. Zelek, David A Clausi
{"title":"基于显著对手运动特征的人类动作识别","authors":"A. Shabani, J. Zelek, David A Clausi","doi":"10.1109/CRV.2010.54","DOIUrl":null,"url":null,"abstract":"Human action recognition can be performed using multiscale salient features which encode the local events in the video. Existing feature extraction methods use non-causal spatio-temporal filtering, and hence, they are not biologically plausible. To address this inconsistency, new features extracted from a biologically plausible perception model are introduced. In this model, the opponent-based motion energy is computed using oriented motion filters constructed from a bio-inspired time-causal filtering. The salient features are then extracted from the regions of interest in the motion energy map. The extracted opponent based motion features are then utilized for action classification with a bag-of-words approach. Experiments using a publicly available (Weizmann) data set shows 93:5% classification accuracy which is an improvement over comparable methods.","PeriodicalId":358821,"journal":{"name":"2010 Canadian Conference on Computer and Robot Vision","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Human Action Recognition Using Salient Opponent-Based Motion Features\",\"authors\":\"A. Shabani, J. Zelek, David A Clausi\",\"doi\":\"10.1109/CRV.2010.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human action recognition can be performed using multiscale salient features which encode the local events in the video. Existing feature extraction methods use non-causal spatio-temporal filtering, and hence, they are not biologically plausible. To address this inconsistency, new features extracted from a biologically plausible perception model are introduced. In this model, the opponent-based motion energy is computed using oriented motion filters constructed from a bio-inspired time-causal filtering. The salient features are then extracted from the regions of interest in the motion energy map. The extracted opponent based motion features are then utilized for action classification with a bag-of-words approach. Experiments using a publicly available (Weizmann) data set shows 93:5% classification accuracy which is an improvement over comparable methods.\",\"PeriodicalId\":358821,\"journal\":{\"name\":\"2010 Canadian Conference on Computer and Robot Vision\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Canadian Conference on Computer and Robot Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2010.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Canadian Conference on Computer and Robot Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2010.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

利用多尺度显著特征对视频中的局部事件进行编码,可以实现人体动作识别。现有的特征提取方法使用非因果时空滤波,因此,它们在生物学上不合理。为了解决这种不一致,引入了从生物学上合理的感知模型中提取的新特征。在该模型中,基于对手的运动能量是使用基于生物启发的时间因果滤波构造的定向运动滤波器来计算的。然后从运动能量图中感兴趣的区域提取显著特征。然后利用提取的基于对手的运动特征,使用词袋方法进行动作分类。使用公开可用的(Weizmann)数据集进行的实验显示,分类准确率为93:5%,比可比方法有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human Action Recognition Using Salient Opponent-Based Motion Features
Human action recognition can be performed using multiscale salient features which encode the local events in the video. Existing feature extraction methods use non-causal spatio-temporal filtering, and hence, they are not biologically plausible. To address this inconsistency, new features extracted from a biologically plausible perception model are introduced. In this model, the opponent-based motion energy is computed using oriented motion filters constructed from a bio-inspired time-causal filtering. The salient features are then extracted from the regions of interest in the motion energy map. The extracted opponent based motion features are then utilized for action classification with a bag-of-words approach. Experiments using a publicly available (Weizmann) data set shows 93:5% classification accuracy which is an improvement over comparable methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信