带模谓词的一阶逻辑中的一个量词交替

Manfred Kufleitner, Tobias Walter
{"title":"带模谓词的一阶逻辑中的一个量词交替","authors":"Manfred Kufleitner, Tobias Walter","doi":"10.1051/ita/2014024","DOIUrl":null,"url":null,"abstract":"Adding modular predicates yields a generalization of first-order logic FO over words. The expressive power of FO[<,MOD] with order comparison $x<y$ and predicates for $x \\equiv i \\mod n$ has been investigated by Barrington, Compton, Straubing and Therien. The study of FO[<,MOD]-fragments was initiated by Chaubard, Pin and Straubing. More recently, Dartois and Paperman showed that definability in the two-variable fragment FO2[<,MOD] is decidable. In this paper we continue this line of work. \r\nWe give an effective algebraic characterization of the word languages in Sigma2[<,MOD]. The fragment Sigma2 consists of first-order formulas in prenex normal form with two blocks of quantifiers starting with an existential block. In addition we show that Delta2[<,MOD], the largest subclass of Sigma2[<,MOD] which is closed under negation, has the same expressive power as two-variable logic FO2[<,MOD]. This generalizes the result FO2[<] = Delta2[<] of Therien and Wilke to modular predicates. As a byproduct, we obtain another decidable characterization of FO2[<,MOD].","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"64 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"One quantifier alternation in first-order logic with modular predicates\",\"authors\":\"Manfred Kufleitner, Tobias Walter\",\"doi\":\"10.1051/ita/2014024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adding modular predicates yields a generalization of first-order logic FO over words. The expressive power of FO[<,MOD] with order comparison $x<y$ and predicates for $x \\\\equiv i \\\\mod n$ has been investigated by Barrington, Compton, Straubing and Therien. The study of FO[<,MOD]-fragments was initiated by Chaubard, Pin and Straubing. More recently, Dartois and Paperman showed that definability in the two-variable fragment FO2[<,MOD] is decidable. In this paper we continue this line of work. \\r\\nWe give an effective algebraic characterization of the word languages in Sigma2[<,MOD]. The fragment Sigma2 consists of first-order formulas in prenex normal form with two blocks of quantifiers starting with an existential block. In addition we show that Delta2[<,MOD], the largest subclass of Sigma2[<,MOD] which is closed under negation, has the same expressive power as two-variable logic FO2[<,MOD]. This generalizes the result FO2[<] = Delta2[<] of Therien and Wilke to modular predicates. As a byproduct, we obtain another decidable characterization of FO2[<,MOD].\",\"PeriodicalId\":438841,\"journal\":{\"name\":\"RAIRO Theor. Informatics Appl.\",\"volume\":\"64 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Theor. Informatics Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ita/2014024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ita/2014024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

添加模谓词产生单词上的一阶逻辑FO的泛化。Barrington, Compton, Straubing和Therien研究了阶比较$x本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
One quantifier alternation in first-order logic with modular predicates
Adding modular predicates yields a generalization of first-order logic FO over words. The expressive power of FO[<,MOD] with order comparison $x
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信