物联网中基于联邦学习的回顾性感知

Rafiq Mazen Kamel, Amr H. El Mougy
{"title":"物联网中基于联邦学习的回顾性感知","authors":"Rafiq Mazen Kamel, Amr H. El Mougy","doi":"10.1109/LCNSymposium50271.2020.9363271","DOIUrl":null,"url":null,"abstract":"Knowledge in the IoT is typically distributed and sparse. Combining information from multiple sources remains a challenge to researchers. In addition, due to the strict capabilities of sensing devices, they may go to sleep for extended durations and miss critical data. In this paper, we propose a system that is capable of retrospective sensing based on federated machine learning models. The system is implemented on a distributed edge computing architecture and is capable of fusing learned data from several sensors to produce accurate estimations of missed data. The proposed system is evaluated using computer simulations on real and synthetic datasets and shows high accuracy in predicting missed data.","PeriodicalId":194989,"journal":{"name":"2020 IEEE 45th LCN Symposium on Emerging Topics in Networking (LCN Symposium)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Retrospective Sensing Based on Federated Learning in the IoT\",\"authors\":\"Rafiq Mazen Kamel, Amr H. El Mougy\",\"doi\":\"10.1109/LCNSymposium50271.2020.9363271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge in the IoT is typically distributed and sparse. Combining information from multiple sources remains a challenge to researchers. In addition, due to the strict capabilities of sensing devices, they may go to sleep for extended durations and miss critical data. In this paper, we propose a system that is capable of retrospective sensing based on federated machine learning models. The system is implemented on a distributed edge computing architecture and is capable of fusing learned data from several sensors to produce accurate estimations of missed data. The proposed system is evaluated using computer simulations on real and synthetic datasets and shows high accuracy in predicting missed data.\",\"PeriodicalId\":194989,\"journal\":{\"name\":\"2020 IEEE 45th LCN Symposium on Emerging Topics in Networking (LCN Symposium)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 45th LCN Symposium on Emerging Topics in Networking (LCN Symposium)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LCNSymposium50271.2020.9363271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 45th LCN Symposium on Emerging Topics in Networking (LCN Symposium)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCNSymposium50271.2020.9363271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

物联网中的知识通常是分布式和稀疏的。对研究人员来说,整合来自多个来源的信息仍然是一个挑战。此外,由于传感设备的严格能力,它们可能会长时间进入睡眠状态,从而错过关键数据。在本文中,我们提出了一个基于联邦机器学习模型的回顾性感知系统。该系统在分布式边缘计算架构上实现,能够融合来自多个传感器的学习数据,从而对缺失数据进行准确估计。通过对真实数据集和合成数据集的计算机模拟对该系统进行了评估,结果表明该系统在预测缺失数据方面具有较高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Retrospective Sensing Based on Federated Learning in the IoT
Knowledge in the IoT is typically distributed and sparse. Combining information from multiple sources remains a challenge to researchers. In addition, due to the strict capabilities of sensing devices, they may go to sleep for extended durations and miss critical data. In this paper, we propose a system that is capable of retrospective sensing based on federated machine learning models. The system is implemented on a distributed edge computing architecture and is capable of fusing learned data from several sensors to produce accurate estimations of missed data. The proposed system is evaluated using computer simulations on real and synthetic datasets and shows high accuracy in predicting missed data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信