基于数学函数优化的抗体剩余法的改进人工免疫系统

D. Yap, A. Habibullah, S. P. Koh, S. Tiong
{"title":"基于数学函数优化的抗体剩余法的改进人工免疫系统","authors":"D. Yap, A. Habibullah, S. P. Koh, S. Tiong","doi":"10.1109/SCORED.2010.5703996","DOIUrl":null,"url":null,"abstract":"Artificial immune system (AIS) is one of the nature-inspired algorithm for optimization problem. In AIS, clonal selection algorithm (CSA) is able to improve global searching ability. However, the CSA convergence and accuracy can be improved further because the hypermutation in CSA itself cannot always guarantee a better solution. Alternatively, Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO) have been used efficiently in solving complex optimization problems, but they have a tendency to converge prematurely. In this study, the CSA is modified using the best solutions for each exposure (iteration) namely Remainder-CSA. The results show that the proposed algorithm is able to improve the conventional CSA in terms of accuracy and stability for single objective functions.","PeriodicalId":277771,"journal":{"name":"2010 IEEE Student Conference on Research and Development (SCOReD)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An improved artificial immune system based on antibody remainder method for mathematical function optimization\",\"authors\":\"D. Yap, A. Habibullah, S. P. Koh, S. Tiong\",\"doi\":\"10.1109/SCORED.2010.5703996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial immune system (AIS) is one of the nature-inspired algorithm for optimization problem. In AIS, clonal selection algorithm (CSA) is able to improve global searching ability. However, the CSA convergence and accuracy can be improved further because the hypermutation in CSA itself cannot always guarantee a better solution. Alternatively, Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO) have been used efficiently in solving complex optimization problems, but they have a tendency to converge prematurely. In this study, the CSA is modified using the best solutions for each exposure (iteration) namely Remainder-CSA. The results show that the proposed algorithm is able to improve the conventional CSA in terms of accuracy and stability for single objective functions.\",\"PeriodicalId\":277771,\"journal\":{\"name\":\"2010 IEEE Student Conference on Research and Development (SCOReD)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Student Conference on Research and Development (SCOReD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCORED.2010.5703996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Student Conference on Research and Development (SCOReD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCORED.2010.5703996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

人工免疫系统(AIS)是一种受自然启发的优化算法。在AIS中,克隆选择算法(CSA)能够提高全局搜索能力。然而,由于CSA本身的超突变并不能保证得到更好的解,因此CSA的收敛性和准确性还有待进一步提高。另外,遗传算法(GAs)和粒子群算法(PSO)已经被有效地用于解决复杂的优化问题,但它们有过早收敛的倾向。在本研究中,使用每次曝光(迭代)的最佳解决方案即剩余CSA来修改CSA。结果表明,该算法在单目标函数的精度和稳定性方面都有较好的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved artificial immune system based on antibody remainder method for mathematical function optimization
Artificial immune system (AIS) is one of the nature-inspired algorithm for optimization problem. In AIS, clonal selection algorithm (CSA) is able to improve global searching ability. However, the CSA convergence and accuracy can be improved further because the hypermutation in CSA itself cannot always guarantee a better solution. Alternatively, Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO) have been used efficiently in solving complex optimization problems, but they have a tendency to converge prematurely. In this study, the CSA is modified using the best solutions for each exposure (iteration) namely Remainder-CSA. The results show that the proposed algorithm is able to improve the conventional CSA in terms of accuracy and stability for single objective functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信