基于HJB解的非线性系统鲁棒控制的最优控制方法

D. Adhyaru, I. Kar, M. Gopal
{"title":"基于HJB解的非线性系统鲁棒控制的最优控制方法","authors":"D. Adhyaru, I. Kar, M. Gopal","doi":"10.1504/IJAAC.2009.025238","DOIUrl":null,"url":null,"abstract":"In this paper, a Hamilton-Jacobi-Bellman (HJB) equation based optimal control algorithm for robust controller design, is proposed for a nonlinear system. Utilizing the Lyapunov direct method, controller is shown to be optimal with respect to a cost functional that includes maximum bound on system uncertainty. Controller is continuous and requires the knowledge of the upper bound of system uncertainty. In the proposed algorithm, Neural Network (NN) is used to find approximate solution of HJB equation. Proposed algorithm has been applied on a nonlinear uncertain system.","PeriodicalId":443926,"journal":{"name":"2009 Seventh International Conference on Advances in Pattern Recognition","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Optimal Control Approach to Robust Control of Nonlinear Systems Using Neural Network Based HJB solution\",\"authors\":\"D. Adhyaru, I. Kar, M. Gopal\",\"doi\":\"10.1504/IJAAC.2009.025238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a Hamilton-Jacobi-Bellman (HJB) equation based optimal control algorithm for robust controller design, is proposed for a nonlinear system. Utilizing the Lyapunov direct method, controller is shown to be optimal with respect to a cost functional that includes maximum bound on system uncertainty. Controller is continuous and requires the knowledge of the upper bound of system uncertainty. In the proposed algorithm, Neural Network (NN) is used to find approximate solution of HJB equation. Proposed algorithm has been applied on a nonlinear uncertain system.\",\"PeriodicalId\":443926,\"journal\":{\"name\":\"2009 Seventh International Conference on Advances in Pattern Recognition\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Seventh International Conference on Advances in Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJAAC.2009.025238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Conference on Advances in Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAAC.2009.025238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

针对一类非线性系统,提出了一种基于Hamilton-Jacobi-Bellman (HJB)方程的鲁棒控制器最优控制算法。利用李雅普诺夫直接方法,证明了控制器对于包含系统不确定性最大界的代价函数是最优的。控制器是连续的,需要知道系统不确定性的上界。在该算法中,神经网络(NN)被用于寻找HJB方程的近似解。该算法已应用于一个非线性不确定系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Control Approach to Robust Control of Nonlinear Systems Using Neural Network Based HJB solution
In this paper, a Hamilton-Jacobi-Bellman (HJB) equation based optimal control algorithm for robust controller design, is proposed for a nonlinear system. Utilizing the Lyapunov direct method, controller is shown to be optimal with respect to a cost functional that includes maximum bound on system uncertainty. Controller is continuous and requires the knowledge of the upper bound of system uncertainty. In the proposed algorithm, Neural Network (NN) is used to find approximate solution of HJB equation. Proposed algorithm has been applied on a nonlinear uncertain system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信